
D4.3 Tool Support for Evolution-Aware
Security Checks and Monitor Generation

Sven Wenzel (TUD), Daniel Warzecha (TUD), Jan Jürjens (TUD)

Document information

Document Number D4.3

Document Title Tool Support for Evolution-Aware Security Checks

and Monitor Generation

Version 1.0

Status Final

Work Package WP 4

Deliverable Type Report and Prototype

Contractual Date of Delivery 31 January 2012

Actual Date of Delivery 31 January 2012

Responsible Unit TUD

Contributors TUD

Keyword List Model-based verification, Security,

Evolution, Monitoring

Dissemination level PU

Document change record

Version Date Status Author (Unit) Description

0.01 27.09.2011 Draft S. Wenzel (TUD) Outline of the

deliverable

0.02 04.10.2011 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

Description of

planned content

0.03 31.10.2011 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

1st draft of

Chapters 2,3,4,5

0.04 16.11.2011 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

Update of

Chapters 2,3,4,5

0.05 09.11.2011 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

Introduction,

Conclusion,

Appendix

0.06 02.12.2011 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

General update, Exec.

Summary

0.07 16.12.2011 Draft S. Wenzel (TUD),

D. Warzecha (TUD),

J. Jürjens (TUD)

General Update

Version for scientific re-

view

0.08 22.12.2011 Draft M. Angeli (UNITN) 1st quality check

0.09 30.12.2011 Draft F. Bouquet (INR),

E. Chiarani (UNITN),

O. Delande (THA),

F. Innerhofer-

Oberperfler (UIB),

F. Paci (UNITN),

S. Paul (THA)

1st scientific review

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 2/136

0.10 13.01.2012 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

General update w.r.t.

review results

0.11 18.01.2012 Draft S. Wenzel (TUD),

D. Warzecha (TUD),

J. Jürjens (TUD)

Completion for second

reviews

0.12 20.01.2012 Draft M. Angeli (UNITN) 2nd quality check

0.13 20.01.2012 Draft F. Bouquet (INR),

E. Chiarani (UNITN),

O. Delande (THA),

F. Innerhofer-

Oberperfler (UIB),

F. Paci (UNITN),

S. Paul (THA)

2nd scientific review

0.14 26.01.2012 Draft S. Wenzel (TUD),

D. Warzecha (TUD)

General update w.r.t.

2nd review results

1.0 26.01.2012 Final S. Wenzel (TUD),

D. Warzecha (TUD),

J. Jürjens (TUD)

Final Version

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 3/136

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 6

1 INTRODUCTION 8

2 THE UMLCHANGE NOTATION 10

2.1 The Profile . 10

2.1.1 Common Properties and Tags . 11

2.1.2 «del» , «add» and «subst» . 12

2.1.3 «edit», «move» and «copy» . 13

2.1.4 «del-all», «add-all» and «subst-all» 14

2.1.5 Describing Complex Changes Using «keep» and «old» 16

2.2 The Grammar . 17

2.2.1 Simple Element Descriptions . 17

2.2.2 Referencing Namespaces . 19

2.2.3 Other Uses of the Grammar . 19

3 TOOL SUPPORT 20

3.1 CARiSMA Architecture . 20

3.1.1 Extending CARiSMA . 21

3.1.2 Evolution Support . 23

3.2 Validation . 24

3.3 Difference-Based Security Analysis . 25

4 SUPPORT FOR THE CREATION OF TEST SCHEMAS 26

4.1 Integrated Approach . 26

4.2 Transformation of UMLsec Stereotypes into Test Schemas 27

4.3 Decreasing Model Comparison Efforts . 28

5 STATECHART-BASED MONITORING OF JAVA APPLICATIONS 29

5.1 Introduction . 29

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 4/136

5.1.1 Bytecode instrumentation . 29

5.2 Generation of Monitors . 30

5.2.1 Notation . 31

5.2.2 Transformation of a UML state diagram 34

5.3 Implementation . 35

5.3.1 Monitor Initialization . 35

5.3.2 Internal Model Representation and Transformation 36

5.3.3 Bytecode Instrumentation . 36

5.3.4 Method Call Validation . 38

5.4 Evaluation . 38

5.5 Application . 39

6 LOG-BASED MONITORING OF PROCESSES 41

6.1 The ProM Framework . 41

6.2 Conversion of Activity Diagrams to Petri Nets 43

6.3 CARiSMA Check (Activity to Petri Net Converter) 47

6.4 Application . 47

7 CONCLUSIONS 49

A Appendix 53

A.1 CARiSMA Plugin List . 54

A.2 UMLchange Profile Diagram . 55

A.3 UMLchange Grammar Keys and Values . 56

A.4 Implementation of Evolution stereotypes . 57

A.5 Export of Evolution Information for SeTGaM 58

A.6 Algorithm Rules of the Activity to Petri Net Converter 59

A.7 ESSOS 2012: A Sound Decision Procedure for the Compositionality of
Secrecy . 61

A.8 AFADL 2012: Vérification et Test pour des systèmes évolutifs 70

A.9 SFM 2011: Modelling Secure Systems Evolution 86

A.10 ARES 2011: Model-based security verification and testing for smart-cards . 111

A.11 ECMFA 2011: Incremental Security Verification for Evolving UMLsec models120

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 5/136

Executive summary

This deliverable describes the results of Task T4.3 “Extend existing security analysis tools
with adaptive security ” and Task T4.4 “Develop approach for security monitor generation
for adaptive security ” in Year 3 of the SecureChange project. While the description of
work (DoW) declared this deliverable (D4.3) to focus only on T4.4 we decided to include
T4.3 as well, because it has been continued in Year 3 and its results would be unreported
otherwise.

Deliverable 4.1 [42] and Deliverable 4.2 [43] introduced a notation for describing possible
model evolutions that enables automated security checks for all possible evolution paths.
In Year 2, Work Package 4 has been started to implement analysis tools to perform these
checks (i.e. Task T4.3, M18-M30). This task has been continued. The first prototypes
presented in D4.2 have been re-developed and ported to the Eclipse platform to better
integrate with tools of other work packages. Furthermore, the notation for describing
evolutions has been improved. It has also been decoupled from the security notation
UMLsec to enable a usage in other scenarios as well. The new notation and the new tool
are discussed in the first half of this deliverable.

The second part of this deliverable focuses on Task T4.4 “Develop approach for secu-
rity monitor generation for adaptive security ” (M31-M36). We present two monitoring
approaches. The first approach is an in-line monitoring approach where the monitor is
generated from UML state charts and integrated into Java software by instrumenting its
byte code. The second approach realizes a monitor where runtime logs of executed
software systems can be compared against activity diagrams describing the expected
behaviour.

Tool-Level Integration

The re-development of our tool prototype from Year 2 resulted in the new tool framework
CARiSMA which smoothly fits into the tool roadmap of the SecureChange project (see
Figure 1).

Figure 1: SecureChange tool roadmap

CARiSMA is based on Eclipse, and the Eclipse Modeling Framework (EMF), respectively.
For modeling arbitrary modeling tools, e.g. Papyrus MDT, can be used. The use of Eclipse
and EMF allows us to better integrate with other tools.

CARiSMA has been integrated with EvoTest/SeTGaM (WP7) for model-based testing

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 6/136

(see Section 4). It can benefit from our approach in two ways. On the one hand, the
security requirements that are checked with CARiSMA can be exported in order to gen-
erate test cases. On the other hand, the verified evolutions of a model can be exported
to analyze whether and which test cases have to be adapted. The integration has been
explored within the POPS scenario. The general requirement considered is ‘Specification
Evolution’ and the common property is ‘Life-cycle consistency ’.

In addition, the use of EMF enables the analysis of UML2 models which are used by other
partners in the project, too. For example, Thales uses the Papyrus MDT modeling tool
and UML2 models in the ATM case study. The compatibility between the tools enables
an integration of the security analyses developed in WP4 with partners using the same
modeling standards.

The monitoring approaches have not been integrated with other work packages, yet,
because of their late position in project timeline. Their integration could be topic of future
work.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 7/136

1 Introduction

During Year 1 and Year 2, Work Package 4 worked in the security analysis of evolving
models (Deliverable 4.1 [42] and Deliverable 4.2 [43]). This includes a notation for de-
scribing model evolutions, UMLseCh, and analysis tools to perform automated security
checks. In the last year of the project (Year 3), this work has been continued. Task T4.3
“Extend existing security analysis tools with adaptive security ”, which started in Year
2, has been completed. The notation for describing model evolutions, UMLseCh, has
been developed into the new UMLchange profile which fully reflects all aspects for secu-
rity analysis of evolving models and beyond that supports other more general evolution-
related analyses. Furthermore, the prototype tool delivered in Deliverable 4.2 has been
re-developed into a new powerful analysis tool. It has been ported from the proprietary
MDR library [37] onto the Eclipse platform with its Eclipse Modeling Framework (EMF),
the basis for many open and commercial modeling tools. This way, the new tool can
be easily integrated into existing development environments, which eased the integration
with other partners of the SecureChange project. In the POPS case study, the integration
between WP4 and WP7 was brought to tool level. And also in the ATM case study, Thales
was able to use the new tool on Eclipse basis.

In Year 3, Work Package 4 also dealt with Task T4.4 “Develop approach for security mon-
itor generation for adaptive security ”. The goal here is to supervise software at runtime
in order to preserve security. After software has been modeled and models have been
checked to be secure, the software is – following the model-driven engineering approach
– generated. However, since software generation is often not 100% sufficient in industrial
scenarios, it can happen, that the generated source code is manipulated subsequently.
Hence, it is necessary to check, that the supplementary changes do not compromise the
security properties that have earlier been verified on the models. In other words, it has to
be ensured that the software conforms to the models. We have realized two alternative
approaches to check the software’s behavior at runtime via monitoring. One approach
is based on in-line monitoring so that Java byte code is extended by routines that report
each method call to a monitor. If the monitor recognizes invalid behavior, it can report an
error or even stop the software execution. The other approach focuses on larger systems
and checks whether the execution logs conform to the previously defined specification.

Chapters Walkthrough This deliverable can be divided into two parts. The first part
deals with the security analysis of evolution. Chapter 2 introduces the new UMLchange
profile that has been developed out of UMLseCh, which was described in the previous
deliverables. It also discusses the grammar that can be used to describe new elements
that are to be inserted into a model. The new analysis tool, CARiSMA, is described in
Chapter 3. The chapter also shows details on the evolution support of the tool. The
tool level integrations with model-based testing (WP7) is discussed separately in Chap-
ter 4. The second part of this deliverable deals with the supervision of systems that might
evolve. Therefore, we have developed two monitoring approaches. Chapter 5 introduces

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 8/136

an in-line monitoring approach that generates monitors from UML state charts. An ap-
proach for offline monitoring that compares execution logs with activity diagrams is shown
in Chapter 6. Finally, we conclude our work and discuss future work in Chapter 7.

Acknowledgements We would like to thank Benjamin Berghoff, Lidiya Kaltchev, Jo-
hannes Kowald, Kubi Mensah, Yousefi Parvaneh, and Klaus Rudack, students of the
TU Dortmund, for their contribution to the tool implementations of this deliverable. We
also warmly thank Daniel Warzecha, former researcher at the TU Dortmund and now
at Fraunhofer ISST, for his help in the tool implementation effort. Special thanks to our
project partners, Michela Angeli, Fabrice Bouquet, Elisa Chiarani, Olivier Delande, Frank
Innerhofer-Oberperfler, Federica Paci, and Stephane Paul for their comments on earlier
versions of this document.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation
version 1.0| page 9/136

2 The UMLchange Notation

In Year 1 and 2 of the SecureChange project, UMLseCh has been developed as a notation
for describing multiple possible evolution paths of a model [42, 43]. It was further shown
how UMLseCh can be used to improve security analysis for evolving models as models
do not have to be re-verified completely but the verification can be limited to the changes
[26].

UMLseCh was an extension of the well-known UMLsec profile [24]. Hence, it was tightly
bound to security engineering and security analysis. We have now extracted the evolution
specific parts of UMLseCh and elaborated them into the UMLchange profile. The profile
is thus no longer bound to security properties. Although UMLchange is still used in a
security context and together with UMLsec, we decided for the separation of concerns.
Security aspects and evolution aspects are now separated in two different profiles. How-
ever, the merger of both profiles will result in UMLseCh which was already presented,
which can be expressed with the formula:

UMLseCh = UMLsec + UMLchange

Nonetheless, there have been various improvements of the stereotypes for describing
evolution. Therefore, we use this chapter to introduce the new UMLchange profile and
show how it can be used to describe different evolutions. In particular we will explain the
grammar used to describe additive changes, since this has been omitted in Deliverable
4.2. Later in Section 3.1.2, we discuss a parser component that can analyze an annotated
model and compute all possible evolutions out of it.

2.1 The Profile

Figure 2.1 shows the core elements of the UMLchange profile, i.e. the UMLchange
stereotypes and their properties (also known as tags). The majority of the stereotypes
(excluding « old » and « keep ») describe changes (i.e. the change stereotypes). The
change stereotypes can be applied to any UML model element, as indicated by the ex-
tension relationships targeting meta class Element, the super class of all UML elements.
Change stereotypes extend the abstract stereotype Change, which provides the basic
tags {ref}, {ext} and {constraint}.

Figure 2.2 provides some examples for using UMLchange. Class Redundant will be
deleted. Class TooConcrete is replaced with the Interface IGeneral. A new element
NewClass is inserted into the main package. Furthermore, class OuterClass will be
moved to package Outside and the class FalseName will be renamed to CorrectName.

The components of the profile are described in more detail below.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 10/136

Figure 2.1: The UMLchange profile (core elements)

Figure 2.2: Examples of Change Stereotypes

2.1.1 Common Properties and Tags

Each UMLchange change description has the following tags: {ref},{ext} and {constraint}.
To enable the description of multiple independent changes at a model element (e.g. two
independent additions, each adding one operation to a class), each of these tags is multi-
valued.

Every change has an ID so that it can be referenced by other changes. The tag {ref}
contains the change IDs for each change at the stereotype application. Each application
of a change stereotype must at least have one ID. These IDs should be unique in the
model scope. The change IDs are used in constraints and in change stereotype tags to
relate their entries to the corresponding change. Examples for IDs are

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 11/136

deleteTransition, some_Change and add2Operations.

Stereotypes cannot be applied to UML extension elements themselves. {ext} helps to
describe changes of stereotype applications and their tagged values. Its format is

ChangeID = StereotypeName[.TagName]

If a change is directed at a model element, no {ext} entry is necessary. If the change
target is the extension of an element, {ext} follows a convention of most UMLchange
stereotype tag values. Each entry has to be prefixed with the id of the corresponding
change so that entries in the value lists do not need to adhere to a certain order. If the
target is a stereotype application, the name of the applied stereotype must be given. If a
tagged value of a stereotype application is the target of the change, the tag name must
the given in addition to that.

Every change may have constraints attached to it describing when the change may or
may not take place. The corresponding tag {constraint} has the following format:

ChangeID =AND(OtherChangeID)|NOT (OtherChangeID)|
REQ(OtherChangeID)[, ...]

The obligatory change ID is followed by a constraint that either forces another change
to be simultaneously applied (AND(OtherChangeID)), excludes a change from being ap-
plied simultaneously (NOT(OtherChangeID)) or forces a change to be applied after a cer-
tain other change (REQ(OtherChangeID)). A change may have more than one constraint.
Each constraint can either be a separate {constraint} entry or in a comma-separated list
of constraints as one entry. Contradicting constraints lead to not including any of the
conflicting changes.1

2.1.2 «del» , «add» and «subst»

The stereotype « del » is used to delete the targeted model element. It recursively deletes
all model elements owned by the targeted element. Any connecting model elements (e.g.
associations) are also deleted to preserve the validity of the model. If the target of « del »
is the multi-valued tagged value of a stereotype application, this stereotype deletes all
values of the tag.

The stereotype « add » serves the purpose of describing additions to model elements.
« add » has to be applied to the elements which will own the new elements. If the target of
« add » is a stereotype application, multi-valued tags receive additional values. Additions
to single-valued tags are treated as substituting the old tagged value with the new value.

Applying « subst » allows to describe the substitution of the targeted model element by
one or more new model elements. The owner of the substitute element or elements is
the parent of the substituted element. By substituting old elements, all of their contained
elements are removed from the model, as well as all connection model elements. To

1The stereotype ChangeSet which was discussed in Deliverable D4.2 [43] is no longer contained in the
profile. It was used to group changes that should be performed together which can now be enforced with the
above-mentioned constraints.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 12/136

prevent deleting contained elements, the stereotype « keep » must be applied accordingly
(see 2.1.5). If tagged values are to be substituted, both single and multi-valued tags are
completely substituted by the new values.

To describe the addition of new model elements or the substitutes of old elements, the
stereotypes « add » and « subst » use expressions built with the UMLchange grammar.
New elements are described by their metaclass names and pairs of keys and values.
The new elements can be further defined by recursively describing contained elements.
Changes on the grammar level are dependent on each other. Alternatives provide the
ability to describe change variations. The elements described inside these alternatives
are meant to be processed together.

The UMLchange grammar expressions are used in the {new} tag. Its format is

ChangeID = UMLchangeGrammarExpression

For example, to describe the addition of a new class named someClass to
a package, « add » has to be applied to the package. The appropriate {new} entry is

someID = {Class(name = someClass)}
someID is the ID of the corresponding change. The UMLchange grammar is described
in detail in 2.2.

In the example model in Figure 2.3, a new class named ClassX will be added to the main
package. The class will have a String property named someProperty. The stereotype
« critical » will be removed from ClassA. Finally, the class Real implementing the modelled
interface will be substituted by a class named Independent containing some new void
operation. As old connections are not kept, the new class will not need to implement the
modelled interface.

Figure 2.3: Adding, Deleting and Substituting Elements

2.1.3 «edit», «move» and «copy»

Minor changes can be expressed by applying « edit » to a model element. Its tag {values}
has the format

ChangeID = {(KeyV aluePairs)}[, ...]
KeyValuePairs represents the corresponding subset of the UMLchange grammar. The
keys have to be valid attribute names of the targeted element. An example entry to

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 13/136

change the name of a class to NewName and its visibility to private would be

someID = {(name = NewName, visibility = private)}

As with the description of new model elements, {values} entries can describe alternative
evolutions using the correct syntax. Editing stereotype applications is not possible, as
changes would amount to redefining the stereotype instead of its application. Editing
tagged values is analogous to substituting old with new tag values.

For structural changes, « copy » is used to indicate that the targeted model element is
to be duplicated in one or more comma-separated namespaces given in the tag {to}.
« move » works in the same vein, but removes the targeted model element from its original
owner and only allows one target namespace. The format of {to} is

ChangeID = {QualifiedNamespace[(KeyV aluePairs)][, ...]}[, ...]

The QualifiedNamespace needs to be qualified in so far that the uniqueness of the
namespace in the model is guaranteed. The copied or moved model element in the
target namespace can then be modified with KeyValuePairs using the same format as in
the {values} tag of « edit ». Multiple destination namespaces must be comma-separated.
An example for an entry in {to} is

copySomething ={mainPackage :: SubPackage(name = NewName),

mainPackage :: SubPackage(name = OtherNewName)}

This describes two copies of the targeted model element to the same SubPackage, re-
naming each one in the process. For obvious reasons it is not allowed to copy a model
element to the same namespace as the source element without changing the name of
the copied element.

If a stereotype application is the target, all of its tagged values are also copied to the
targeted element. If the targeted element already has the stereotype applied to it, all
tagged values are replaced in the process. It is not allowed to change the name of the
stereotype, as this would change the applied stereotype itself.

In the example model (see Figure 2.4), class ClassE has « critical » applied to it. « edit »
is applied to change the value of {high} to only contain operationA. ClassM is moved
alternatively to either package TargetP or TargetP2. Finally, ClassC is copied to both
TargetP and TargetP2.

2.1.4 «del-all», «add-all» and «subst-all»

These three stereotypes allow to describe changes to multiple model elements. They are
applied to the namespace in which the changes are to take place. Apart from the {new}
tag, which works the same way as with the namesakes of the stereotypes, the {pattern}
tag allows to identify the model elements in the namespace affected by the described

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 14/136

Figure 2.4: Editing, Moving and Copying Elements

change. The format of {pattern} is

ChangeID = TargetedElementsPattern

After the change ID, the TargetedElementsPattern uses the same syntax as the Simple
Element Descriptions. First the metaclass of the targeted elements must be given. For
example, if the given metaclass is Class, then the changes would affect all classes in the
namespace marked with the *-all stereotype. Following the metaclass, the affected ele-
ments can be further filtered by giving key value pairs defining certain attributes that the
affected elements must possess. For example, to affect all dependencies having a cer-
tain supplier, the entry would be Dependency(supplier=somePackage::certainSupplier).
Some further examples for entries in {pattern} are

• Dependency(supplier=somePackage::certainSupplier,
contents=<Stereotype(name=secrecy)>)

– all dependencies that have the supplier somePackage::certainSupplier and the
stereotype application of « secrecy »

• Action(contents=<Stereotype>)

– all stereotyped actions

In the example model (see Figure 2.5), all classes in package PackageA with the property
bitrate will receive a new property named length. Furthermore, all operations named
setInput2 in PackageB will be removed from their respective classes.

Figure 2.5: Changing Element Sets with Patterns

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 15/136

2.1.5 Describing Complex Changes Using «keep» and «old»

Describing complex changes with the UMLchange grammar can lead to long-winded
grammar expressions. To provide a simpler method for modelling complex changes,
UMLchange provides the ability to reference changes modelled in a namespace in the
original model. The namespace containing the new model elements can be placed any-
where in the model.

To connect the new model elements to the correct owner in the original model, the owner
relation has to be modelled in the namespace by modelling the owners of the new ele-
ments. However, it is not necessary to completely re-model the owning elements. For
example, one would not need to re-model a class with all of its operations and attributes
to model two new operations for it. Instead it is sufficient to just model the owning class
and its name, as long as the class can be uniquely identified within the original model. To
support this method, « old » is used to mark those incompletely modelled references to
the original model.

In addition to that, « keep » is used to mark model elements that would otherwise be
removed in the process of substituting a model element. Its tag {adopter} has the format

ChangeID = {AdoptingElementDescription}[, ...]

As each alternative description in {new} could describe different new elements, an entry
in {adopter} must describe the receiving element for each alternative in {new}. If an alter-
native of {new} should not receive the element, its corresponding alternative in {adopter}
is left empty. If, after a certain point, the remaining alternatives don’t receive the ele-
ment, then the entries can be omitted. Transferring model elements using « keep » is only
supported when complex namespaces are used to describe the new model elements.

The AdoptingElementDescription uses the same syntax as the simple element descrip-
tions (see Section 2.2). For example, let « subst » be applied to a class. Its {new} entry

substClass = {@newElements}, {@otherV ersion)}

means that the old class is either substituted by the elements in the namespace newEle-
ments or alternatively by those elements in otherVersion. To keep some old contained
element of the old class, it has to be marked with « keep ». If, for example, an old element
is to be left out in the first alternative and should be adopted by a class NewClass when
using the second alternative, the appropriate entry for {adopter} is

substClass = {}, {Class(name = NewClass)}

In the example model (see Figure 2.6), ClassA will be substituted by two new classes,
NewClassA and OtherNewClass. The old operation keptOperation will be adopted by
NewClassA. In addition to that, several new attributes and operations will be added to
ClassB, as modelled in the namespace NewContents.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 16/136

Figure 2.6: Describing Complex Changes with Namespaces

2.2 The Grammar

The UMLchange grammar can be used to describe changes adding new model elements
to existing elements. Each change consists of one or more comma-separated descrip-
tions of alternative evolutions. The format for these alternatives is:

{Description}

The description can be either a series of comma-separated simple element descriptions
depicting new model elements or the single reference of a namespace wherein the addi-
tions to the model are shown.

An example for the UMLchange grammar is

{Class(name = NewClass), Class(name = OtherNewClass, visibility = private)},
{@addClasses}

This example poses two alternative evolutions. The first adds two classes named New-
Class and OtherNewClass, of which the second receives a private visibility. The second
alternative references a namespace addClasses in the model. The referenced names-
pace contains new model elements to be added to the original model, by either adding to
old model elements using « old » or substituting model elements while keeping some of
their contents using « keep ».

2.2.1 Simple Element Descriptions

Simple element descriptions (SED) succinctly describe a UML model element. The for-
mat of an SED is:

Metaclass(KeyV aluePairs)

Each SED starts with the metaclass name of the new element. Every UML metaclass
of an actual non-abstract model element can be used. Apart from that, simple comma-
separated key-value pairs can be given to set the properties of the new model elements,
ranging from common properties (e.g. name) to connection-specific ones (e.g. source
and target for an association). The format of a key-value pair is:

key = value

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 17/136

When setting values for properties which reference other model elements in the original
model, a sufficiently qualified string representation of the referenced model element has
to be given. In the example model (see Figure 2.7), two different classes of the same
name WantedClass exist in two different packages SuperPackage and SubPackage. To
reference a class, the containing package namespace has to be incorporated into the at-
tribute value. However, it is not necessary to add the model namespace to the reference,
as the containing package namespace is sufficient to identify the referenced class.

Figure 2.7: Different Namespaces

Table 2.1 shows some metaclasses, their corresponding keys, their value type and a
description. The value type of a key may be a String, an element of a given enumeration,
or the adequately qualified reference to a model element.

Metaclass Key(s) Type Description
all named elements name String model element name
Property
(Tagged Value)

value String,
Reference

new tagged value

Class visibility Enumeration public, private,
protected or package

Association sourceEndKind,
targetEndKind

Enumeration composite,
shared or none

source, target Reference qualified classifier
Dependency supplier, client Reference qualified classifier

Table 2.1: Excerpt of Metaclasses, Keys and Values

Apart from describing the new model element itself, an additional optional key named
contents with the format

contents =< SimpleElementDescriptions >

provides the means to describe further new model elements that are contained in the
new element, e.g. an operation to be owned by a new class. The usage of the contents
key is not restricted by a maximum depth.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 18/136

2.2.2 Referencing Namespaces

To avoid long descriptions of complex additions, the UMLchange grammar allows to refer-
ence namespaces containing the new elements. The syntax for namespace referencing
is

@NamespaceName

The namespaces referenced by the namespace name must be placed in the scope of
the original model, but it is not necessary to place them in the same scope where the
changes will take place. Connecting the new elements of the namespace to the original
model is accomplished by modeling part of the target model element and application of
the « old » stereotype (see Section 2.1.5).

2.2.3 Other Uses of the Grammar

Other stereotypes of the UMLchange profile use subsets of the UMLchange grammar to
provide a consistent syntax (see table 2.2).

Stereotype Tag Subset Example
« edit » values KeyValuePairs (name=NewName,

visibility=private)
« copy »,« move » to
« copy »,« move » to QualifiedNamespace SomePackage::

SubPackage::TargetClass
« del-all »,
« add-all »,
« subst-all »

pattern SimpleElement-
Description

Class(name=SomeClass,
contents=<Stereotype(
name=UMLsec::critical)>)

« adopter » adopter

Table 2.2: Other Uses of the UMLchange Grammar

{values} of stereotype « edit » uses the same key-value pairs to describe changes to
model element attributes, as does {to} of « copy » and « move ». The target of the copy
or move operation is an adequately qualified namespace equivalent to the model ele-
ment references used in simple element descriptions. The descriptions of the targeted
elements of the *-all stereotypes using {pattern} are the grammar’s simple element de-
scriptions, as is the target element description of {adopter}.

One of the features of the new CARiSMA tool is its ability to parse the different elements
of the UMLchange grammar and create appropriate change structures. These can then
be used to analyse the possible evolutions on a given model.

Due to the migration of the profile UMLseCh to UMLchange, the UMLsec analysis tool
and in particular its evolution aware parts have been adapted. The new tool is discussed
in the following chapter.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 19/136

3 Tool Support

For all approaches towards security enhancement, it is necessary that they are applicable
in practice and thus supported by tools. In Year 1 and 2 of the project, we have created
formal foundations for security analyses of evolving models. Furthermore, as part of
Deliverable 4.2 [43], we have presented a first prototype of an analysis tool that can
perform such evolution-aware security analyses. It was implemented on the basis on
the UMLsec tool, which implements already a large number of security analyses (without
evolution support).

It was a problem, that the UMLsec tool was already ten years old and built on the basis
of the MDR library [37], which is since 2003 no longer maintained. The extensions of the
UMLsec tool were thus only realizable with enormous effort. In addition, the integration
with project partners was hampered, since the tool was limited to UML 1.4 models cre-
ated with ArgoUML [46], which rarely find application in industrial cases. Especially the
missing support of UML 2.x was not adequate.

As a consequence, we decided to re-develop the core of the UMLsec tool into a new tool
called CARiSMA. The new tool is built on the basis of Eclipse and the Eclipse Modeling
Framework (see Section 3.1) and thus supports UML 2.x by using the Eclipse UML2
Plugins which is starting to become a de-facto standard for many commercial and/or
open-source modeling tools such as Papyrus MDT [14], TOPCASED [47], MagicDraw
[23], and IBM Rational Software Architect [22]. Furthermore, as an Eclipse plugin, the
new analysis tool can be smoothly integrated into the modeling tools or other tools which
are based on Eclipse. In addition, the new architecture allows users to extend the tool,
as we will show in what follows.

In Section 3.2 we briefly discuss the tool validation. We conclude with a preview on future
work in Section 3.3.

3.1 CARiSMA Architecture

CARiSMA [9] is implemented as an Eclipse [12] plug-in. Since version 3.0, the architec-
ture of the integrated development environment (IDE) Eclipse is based on the Equinox
kernel. This kernel was developed as a Java framework, and implements the OSGi core
specification, a hardware independent and dynamic software platform enabling applica-
tion management by the component model. As a result, Eclipse now exists only as a
core, which reloads functions in the form of plug-ins.

CARiSMA is fully integrated into the Eclipse GUI (see Figure 3.1). It provides both an
Analysis Wizard (1) for model analysis creation and an Analysis Editor GUI extension
(2) to modify the settings of existing analyses. Furthermore, the results of an executed
analysis are displayed in the Analysis Results view (3).

Model access for analysis is provided via the Eclipse Modeling Framework (EMF) [11],

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 20/136

Figure 3.1: CARiSMA GUI Elements

which implements, among other tools, the OMG Meta Object Facility (MOF) specification
[19]. This implementation, called Ecore, is used as a base for the UML2 metamodel
implementation also provided by the Eclipse Foundation [15]. UML2 provides support
for access and modification of UML 2.x models using the widely accepted .uml XML file
format.

Like Eclipse, CARiSMA has been implemented as a plug-in based architecture. Using
the modularity provided by this method, CARiSMA is distributed as several packages, of
which the Core package includes the main functionality. Furthermore, CARiSMA uses
extension points and extensions [10], there by facilitating the contribution of functionality
of other plug-ins (see sub section 3.1.1). Part of the existing plug-ins can be seen in
Figure 3.2.

Support for different modelling languages can be added by installing the corresponding
modeltype packages. UMLsec and UMLchange are optional packages to incorporate
support for the respective UML profiles. The checks used in a CARiSMA analysis can be
installed separately to enable sleek installations.

3.1.1 Extending CARiSMA

To provide a new check for a CARiSMA analysis, a template plug-in project can be gen-
erated using the appropriate wizard. If required, the wizard generates a preference page
for the check. This page can then be used to set possible global properties.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 21/136

Figure 3.2: Overview of the CARiSMA architecture

A CARiSMA check extends the de.umlsec.tool.analysischeck extension point, which pro-
vides identification and description properties for the check. Additionally, parameters for
the check can be defined using the extension point. A check parameter can be one of the
primitive types String, Integer and Boolean, and file system references to input or output
files and folders. Each parameter can also be marked optional. After defining the check
and its parameters, it is added to the list of available checks and can be added to an
analysis in the Analysis Editor. The check’s parameters can then be either pre-set in the
editor or at the appropriate time during the analysis.

The entry point for a CARiSMA check is the perform method, which receives the pa-
rameters for the given check and an AnalysisHost interface. This interface is used for
generating entries for the Analysis Results view and access to the analysed model. The
two interfaces are shown in Figure 3.3.

Figure 3.3: Check and AnalysisHost Interfaces

A reference to the analysed model is provided by the AnalysisHost interface. The meth-
ods to traverse and analyse the given model are supplied on a more abstract level by
the Ecore metamodel implementation. In the case of UML 2.x models, the Eclipse UML2
metamodel implementation offers easier access to model elements and their properties.
Furthermore, CARiSMA or rather the package de.umlsec.modeltype.uml2 provides some
utility classes to help in collecting and analysing model elements. Finally, to ease working
with the UMLsec and UMLchange profiles, utility classes are provided by the respective
packages.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 22/136

Figure 3.4: CARiSMA Evolution Architecture (simplified)

3.1.2 Evolution Support

CARiSMA is able to parse, interpret and apply evolutions described using UMLchange.
The components providing the support for evolution-aware checks are shown in Figure
3.4.

After applying change descriptions to the model via the UMLchange profile, evolution-
aware CARiSMA checks can be performed on the model. Internally, a parser component,
the UMLchangeParser, searches the model for UMLchange applications, which are col-
lected and then transformed to sets of equivalent delta elements.

The change structure generated by the UMLchangeParser consists of Changes which in
turn contain a list of Alternatives. These Alternatives finally consist of sets of DeltaEle-
ments. In addition to multiple Alternatives, Changes themselves may have constraints
attached to them restricting when the Changes may or may not take place.

The DeltaFactory processes the Change constraints and alternatives and generates all
possible permutations over the alternatives while following the constraints imposed by the
Changes. Each valid change permutation is saved as a Delta which can be fetched from
the DeltaFactory.

A Delta can be applied to the model using the UMLModifier. The UMLModifier receives
the original model, creates a copy of it and applies each DeltaElement to the model copy.
The resulting model is stored and can be used in the CARiSMA evolution-aware checks.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 23/136

3.2 Validation

The new CARiSMA tool, and with it the UMLchange notation, has been evaluated within
the POPS case study. The validation was focused on using CARiSMA for evolution-aware
security analysis in model-based development. It was organized as a half-day workshop
at Gemalto in Paris. During the workshop the new tool and the UMLchange notation
have been presented to industrial practitioners. The presentation included an introduction
into architecture, user interface, and functionality of the tool, as well as teaching the
UMLchange notation. Furthermore, a live demo of the tool was given. And exercises
have been elaborated in order to allow the practitioners to get started with the tool. After
the workshop the practitioners were able to use CARiSMA and to further evaluate the tool
as "homework".

The first impression of the practitioners was that CARiSMA is a nice and powerful tool.
The concept of UMLchange was rated with 4 (of maximal 5) points. The handling of the
stereotype-based approach to describe evolution was rated with 3 points. Especially, the
UMLchange grammar for describing new elements was seen as problematic (2 points).
Typographic errors can arise, e.g. when entering qualified names of referred model ele-
ments. To tackle this problem, one could implement an auto-completion tool that allows
the user to select the referenced element from a list instead of typing its name manu-
ally. This feature is evaluated for the next version of CARiSMA. Another suggestion of
improvement were more expressive error descriptions in case of reported security viola-
tions. To that effect the output of CARiSMA has been extended.

The practitioners were especially interested in how the security checks have been imple-
mented. The fact that most checks are implemented in Java lead to dissatisfaction. From
industrial point of view they prefer that the checks are defined very precisely in OCL [32]
or other formal notations, which would allow them to check whether the checks work as it
is supposed to.

Nonetheless, the practitioners rated the tool to be applicable in daily practice, if UML is
thoroughly used for modeling and if the tool is here and there a little bit improved. Further-
more, a large library of pre-defined checks should be available. However, if necessary, the
checks could be implemented due to the available extension mechanism of CARiSMA.
A thorough review of the SecureChange solutions and thus the basic concepts of the
CARiSMA tool is presented in Deliverable 1.3 [44].

Further Applications. Due to the fact that CARiSMA is now compatible with UML2, it
also allows Thales to integrate the tool into their processes. They use CARiSMA in the
context of the ATM case study. The Thales Security DSML [43] is used to perform a risk
analysis that gives high-level security requirements, which are reflected in the system
design and can be analyzed by means of CARiSMA.

The feedback of Thales provides valuable input so that the tool and the contained security
checks can continuously be improved. A closed validation similar to the POPS validation,
however, did not happen so far.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 24/136

3.3 Difference-Based Security Analysis

Recently, we have started to implement an alternative approach for evolution-aware se-
curity analysis [29]. Instead of annotating a UML model with UMLchange stereotypes, it
is now possible to compare two versions of a model to gather evolution. Due to the new
CARiSMA tool which is based on Eclipse and the support of the UML2-based models, we
are now able to compare two versions of a model (which are EMF model instances from
technical point of view) using the EMFcompare plugin of Eclipse [13]. A new CARiSMA
check that we have implemented can take the difference information provided by EMF-
compare and transform it into an instance of the delta model presented in Section 3.1.2.
Thereby, we can run the evolution-aware security checks as if the UMLchange profile
would have been used.

However, the new approach is partly limited compared to the UMLchange approach.
Since only two versions of a model can be compared, it is not possible to verify all possible
evolution path’s at a time as they could be specified using UMLchange and the grammar.
The difference computation of EMFcompare comes with a drawback. It is either based
on unique identifiers used in the model or it uses a heuristic for comparison. In the first
case, the engineer might be bound to certain modeling tools (i.e. those which preserve
the identifiers of model elements when the model is changed). In the second case, it is
not clear whether the heuristic leads to the correct result which might have an impact on
the quality of the security checks. Furthermore, the difference computation is a runtime
overhead, where it is not clear whether it preserves the runtime advantages of evolution-
aware security checks compared to complete verification of models. We assume that it is
worth in case of very large models and complex security checks.

A detailed analysis of the drawbacks and an evaluation whether the difference-based
approach is a promising solution for evolution-aware security analysis is part of ongoing
and future work.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 25/136

4 Support for the Creation of Test Schemas

In this chapter we show how model-based testing (MBT) jointly profits from the CARiSMA
tool and the UMLchange approach for security annotated models and the MBT under
evolution. Our main objective is that the model used for test generation is verified for con-
sistency with respect to the considered security properties, and this consistency should
also hold after the model has evolved. If not, the model may authorize an incorrect be-
haviour and the produced tests will expect the same erroneous behaviour as the model
from the System Under Test (SUT). The idea has already been discussed in Deliverable
4.2 (Chapter 5) [43] as well as in [17]. It is part of the integration with Work Package 7
(WP7), which focuses on MBT.

We have considered two security properties of the Global Platform that are critical for a
device issuer/owner in order to have control over compromised running devices [1]: The
locked-status (property 1) and the authorized-status property (property 2). The definitions
are presented later in chapter 4.2.

Since we are not aiming at verifying behavioural properties, but at ensuring a structural
property as a precondition to the testing process, these properties can be checked stat-
ically on UML statecharts. As presented in Deliverable 4.2, we have defined two new
UMLsec stereotypes « locked-status » and « authorized-status » [43]. In the meanwhile,
we have improved these stereotypes in a way, that they are no longer attached to a
subsystem but directly to the affected UML state. The state tags in the stereotypes be-
came thereby obsolete. Checks for each of the two properties have been implemented in
CARiSMA.

Model-based testing makes use of selection criteria that indicate how to select the tests
to be extracted from the model. The approach for testing security properties for evolving
systems relies on defining additional selection criteria in the shape of test schemas. This
is explained in Deliverable 7.4 [45].

4.1 Integrated Approach

The process is summarized in fig. 4.1. First, a validation engineer evolves a model ac-
cording to the proposed changes to the previously verified test model by adding the corre-
sponding UMLchange stereotypes (Step 1). (S)He uses CARiSMA to validate the model
against the security properties (Step 2), to make sure that the model respects them.
Once the model is declared correct by Step 2, a triple for each property and the delta of
changes is exported. Using transformation rules, the schema is written with respect to the
used property (Step 3). The created schema (Step 3) and the produced delta (Step 4),
can be used to produce test cases exercising the property (Step 5).

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 26/136

Figure 4.1: Integration of MBT, UMLsec and UMLchange

4.2 Transformation of UMLsec Stereotypes into Test Schemas

After the model has been verified with CARiSMA we want to export test schemas based
on the properties specified before, encapsulating the expected behaviour of the sys-
tem after executing particular instructions that could potentially violate the property and
make the system not behave as expected. This generation represents thus the link from
UMLsec to testing, since we can automatically generate test sequences from schemas.

In order to do so, we have implemented a check for CARiSMA that exports the security
properties as hoare triples which define generic rules to create test schemas. If the
expected behaviour of the system under test is modeled as a statechart where its states
represent the status of the card’s life-cycle, and there is a command set_status only
executable by privileged applications to change the card’s status from one to another and
this is the event triggering all transitions in the model.

The first property, the locked-status property, ensures that whenever an application with
enough privileges terminates the system (i.e. set to state TERMINATED), the system
cannot be put back in operation. We can write property 1 as a hoare triple.

{state = TERMINATED} all+ {state = TERMINATED}
that is, if we reach the state TERMINATED, then after an arbitrary number of calls to any
operation, the resulting status should be the same. In other words, there should be no
outgoing transitions from that state to other states.

The second property, the authorized-status property, prohibits an application that does
not have the given privilege to terminate the system. It can be written as

{state 6= TERMINATED} all+ {state 6= TERMINATED}

assuming that the application executing the operations has not enough privileges.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 27/136

Hence, based on the hoare triples exported by CARiSMA instances of the schema lan-
guage can be generated. Informally, the sequences of operations that we need for check-
ing the security properties as specified before (that is of the form {T } S+ {Q}) are:

select privileged application
go to state respecting T
use an operation from S at least once
check Q

In case of the locked-status property, the concrete schema looks as follows:
for_each literal $X from TERMINATED
for_each literal $Y from TERMINATED
for_each $Z from any_operation
use any_operation at_least_once
to_reach state_respecting (permission = true) on_instance "instance”
then use any_operation any_number_of_times
to_reach_state_respecting (self.state=$X) on_instance "instance”
then use $Z at_least_once
to_reach_state_respecting (self.state = $Y) on_instance "instance”

4.3 Decreasing Model Comparison Efforts

The test generation process regarding evolutions is as follows. It takes as input the se-
curity property and two formal models, one representing the system before evolution and
another representing the same system after the evolution took place. It also considers
a set of test cases generated from the original model. The process, called SeTGaM,
starts by a comparison of the unfolded test case specification for both models. Then a
dependency impact analysis aims at identifying impacts on both models w.r.t. changes
of the specification and the existing security test suite. Then test cases from the original
security test suite are classified into removed, outdated, unimpacted, new tests, and so
on. Details on the SeTGaM process can be found in [16].

In order to support that process, we have implemented another CARiSMA check. After
a model containing UMLchange annotations has been verified, a description of the evo-
lution is exported. If all changes pass the security verification, we can apply them to the
model and the tool provides the delta to the SeTGaM process. Thereby the SeTGaM
process does not have to recompute the evolution information but it can use the previ-
ously verified changes. In order to integrate the two approaches we have implemented a
component that transforms the UMLchange annotations into a delta description in XML
format. The XML file describes the actual changes that are applied to the model.

An example of an evolution in the GP specification that is exported to the SeTGaM pro-
cess is shown in appendix A.5.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 28/136

5 Statechart-Based Monitoring of Java Ap-
plications

5.1 Introduction

Implementing safety and security aspects is an integral part of software development. To
ensure the safety and security of an application, requirements can be formulated using
UML and the UMLsec profile or other modeling languages. Unfortunately this approach
only guarantees the correctness of the model of the application and cannot verify the
correctness of the implemented program. To accomplish this, static code analysis can
be used, but it often proves to be inefficient for large software projects and cannot guar-
antee that no critical mistakes exist in an application. A solution to this problem is the
monitoring of the application during runtime. This chapter describes an approach, which
uses modifications of bytecode to inform the monitor about the state of the application
(inline-monitoring [8]). The monitor is generated from UML state charts describing the
expected behaviour.

Modern software development requires the utilization of (formal) models (e.g. UML mod-
els) during application design. In model based security engineering, additional informa-
tion is added to the models to describe security requirements. Due to possible mistakes
in the implementation of a program, validating only the model of an application is not
sufficient to guarantee that an application meets all specified security requirements. The
works of Bauer, Jürjens and Pironti ([2], [38]) describe how the validation of an application
model can be combined with the monitoring of the program execution. In addition to that,
Jürjens, Bauer and Yu [27] [3] explain how to maintain the connection between model
and source code during and after the modification of the program.

Colin and Mariani [7] provide a good overview about the concept of run time verification.
Aspects of the application are validated by an external monitor over the course of the
application’s execution, thus enabling to detect mistakes in the implementation of the
program.

Schneider [39] describes an approach to implement a monitor by using a finite state
machine in order to validate program execution. Each step in the program’s execution is
monitored and compared to the transitions of a finite state machine to determine whether
the execution of the program is still valid or if it has to be terminated. We pick up this
idea and describe our monitoring approach which is based on bytecode instrumentation
in what follows.

5.1.1 Bytecode instrumentation

The modification of java bytecode before its execution in the Java Virtual Machine is called
bytecode instrumentation [35]. The source code of the application is not changed and

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 29/136

does not have to be present to alter the bytecode. Furthermore, bytecode instrumentation
enables changes to programs, even when only the .class files are available. One of
the most used modifications of bytecode is the injection of additional operations. These
operations can be used to inform a different application about the state of the program or
the occurrence of certain events.

Bytecode instrumentation is very efficient in terms of performance. Since standard Java
bytecode is used, the Java VM can execute the application and improve its performance
by optimizing the code. Overhead is only created by the addition of operations and can
be reduced by limiting the use of bytecode instrumentation to the relevant parts of the
application[35].

Depending on the point in time at which the bytecode is altered three types of bytecode
instrumentation can be differentiated[35]. With static instrumentation, all .class files of
an application are modified and saved in a separate folder. The Java VM is launched with
the altered files. A disadvantage of this approach is that all .class files of the applica-
tion have to be processed even if they are not used during the course of the program.
This problem is more serious in large software projects. Load-time instrumentation com-
pensates this by altering the files only when they are loaded by the Java VM. The agent
responsible for the bytecode instrumentation alters the code before it is executed. After
the bytecode has been loaded, dynamic instrumentation enables the user to modify the
bytecode while it is executed. Moreover, this adds the ability to restore the .class files to
their original state[35].

5.2 Generation of Monitors

Our approach validates an application during runtime by using an implemented monitor.
In order to report method calls to the monitor, before they are executed, load-time instru-
mentation is used to inject additional statements into the java bytecode of the application.
This type of monitoring is called inline-monitoring [8]. The monitor checks if the desired
method call is allowed at that specific point of program execution based on a UML state
diagram. The diagram is loaded before the execution of the application and transformed
into an internal representation (see Section 5.2.2) to increase the performance of vali-
dating method calls. In case of a forbidden method call the monitor is able to log this
event and/or terminate the observed application, which may be useful if sensible data is
in danger of being compromised.

There are two ways to implement the bytecode instrumentation. On the one hand, all
method calls could be reported to the monitor. This would ensure the highest level of se-
curity, because each method call not represented in the state diagram will be regarded as
an error in the program’s execution. However, due to the increased number of messages
sent to the monitor, the performance of the application would decrease. Alternatively, it
is possible to monitor only those method calls represented in the diagram. This ensures
that all modeled methods may only be called in the order specified by the diagram. All
other methods are allowed to be executed arbitrarily between the monitored ones. The
implementation presented supports both approaches.

The state diagram used for validating the allowed method calls has to meet specific re-

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 30/136

quirements in order to be used as an input for the monitor. These requirements are
described in the following Section 5.2.1. Table 5.1 provides an overview of the most im-
portant features and how they are represented by elements of the state diagram. A more
detailed description of each behavior is given in the indicated sections. Note that the mon-
itor does not perform a security analysis. It only checks if the running program enforces
the restrictions given by the state diagram. The analysis of the application’s security
aspects has to happen in advance, for example by model-based security engineering.
Therefore the usage of the described monitor is not restricted to security analysis.

Feature Element in diagram
allowed method call labeled transition exists
forbidden method call no according transition exists
allow all methods of a class or package transition ends with .*

do not monitor certain methods comment linked to a state
start monitoring entry-point transitions
stop monitoring (monitoring may start again) transition targeted at exit-point
end monitoring (monitor terminates) transition targeted at final state

Table 5.1: Mapping of the desired behaviour of the monitor to elements of the state diagram

5.2.1 Notation

The following sections describe the requirements an UML state diagram has to meet in
order to be used as input for the monitoring application. Furthermore, it shows how the
different parts of the diagram are interpreted by the monitor.

As mentioned above, the state diagram is used to determine an allowed order of opera-
tions. When monitoring method calls a transition in the diagram represents an allowed
method call in the application. To assign the transitions to the correct method calls, each
transition is labeled with the name of the corresponding package, class and method as
shown in Figure 5.1. To indicate that all methods of a class are allowed in a given state the
label of the transition may end with .*. For example, the label packageName.className.*
represents all methods of the class className in the package packageName.

The set of outgoing transitions of a state is therefore equivalent to the set of allowed
method calls of the state. If a method with no corresponding outgoing transition at the
current state is called, the application fails to meet the requirements of the state diagram
and appropriate action can be taken. Otherwise, the transition to the new current state is
performed.

State 1 State 2
packageName.ClassName.methodName

Figure 5.1: Labeling a Transition

States are of minor importance for monitoring an application, as the application is viewed
as a collection of method calls. States are only used to connect transitions with each
other and to model branches in the execution of the application.

Nevertheless, it is important to differentiate between simple states, composite states and

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 31/136

final states. While the handling of simple states is easy, composite states consist of one
or more substates and are therefore more difficult to handle.

A composite state consists of one or more regions consisting of substates and transi-
tions. If a composite state contains more than one region, the regions are called orthog-
onal regions[31, p. 566]. In this case, each region may have its own active state, thus
modeling concurrency. Concurrency and therefore orthogonal regions are not supported
by the presented monitor. Transitions targeted at composite states will be redirected to
the substate targeted by the transition of the initial state of the composite state.

Final states indicate that the region, in which they are present, has terminated. If a final
state located in an outer region of the state machine is reached, the state machine itself is
considered to be terminated[31, p. 547]. In this case, monitoring of the application ends.
Since orthogonal states are not processed, a final state located in a region contained by
a composite state is equivalent to a state having the same outgoing transitions as the
composite state.

Comments are used to define sets of method calls. While modeling security aspects, it
is often useful to be able to define a set of method calls not to be monitored, for example
to allow printing output to the console or to allow calls of all methods of a trusted class.
A way to model this behaviour is to add transitions labeled with the allowed methods to
the state and setting the target of the transition to the state itself. This leads to confusing
diagrams. To prevent this, it is possible to link comments containing a list of all allowed
methods to the state in question (the notation being the same as with transitions). If the
comment is linked to a composite state, the methods are considered to be allowed for the
composite state itself and all substates of it. To differentiate this comment type from other
comments present in the diagram, the prefix allowed: is added to the list.

Figure 5.2 shows an example of this comment type: Additional to the methods specified
by the transitions of the diagram, all methods of the class java.io.PrintStream are
allowed in state 1 and state 2.

CompositeState 1

State 1 State 2

allowed:

java.io.PrintStream.*;

a b

Figure 5.2: A comment allowing methods

Entry- and exit-point pseudostates are used to indicate the beginning and the end of
monitoring an application. The definition of state diagrams states that each entry point
has at most one outgoing transition[31, p. 557]. The outgoing transitions of all entry
points form the set of methods used to begin the monitoring of the application. The
monitor remains inactive until one of the methods in the set is called. Afterwards the
methods called by the application are compared with the state diagram until an exit state
is reached and the monitor returns to its idle state. Figure 5.3 depicts this notation. The

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 32/136

monitored application is allowed to call all methods until method a or method b is called.
In this case, all subsequent method calls have to conform to the appropriate path in
the diagram until the method call d stops the monitoring of the application. Note that if
method a or method b are called again, the monitor will resume its function. Therefore, it
is possible to specify only small parts of an application for monitoring.

state machine ExampleStateMachine

State 1 State 2a

b

c d

Figure 5.3: Exit- and entry-points

History pseudostates can be contained in composite states and are used to return to the
last active state after the composite state is left. The state active after reaching a history
state depends on whether the history state is a deep or shallow history. In the former
case, the whole active state configuration of the composite state in which the history
state is located is restored. In the second case only the substate becomes active which
is directly contained in the composite state. History states are interpreted as specified in
the OMG[31, p. 557] standard, but they present a great challenge, when the state diagram
is transformed into the internal model. The transformation of history states is described
in Section 5.2.2.

A junction pseudostate consists of a set of incoming transitions and a set of outgoing
transitions, which are connected with each other. To determine which outgoing transition
is used, when the junction state is reached, it is necessary to annotate the outgoing tran-
sitions with guard conditions. This approach only deals with the monitoring of method
calls, and since the evaluation of guard conditions implies the reading of attributes, junc-
tion states with more than one outgoing transition are not supported. It is assumed that
the incoming transitions of a junction state are labeled with methods while the outgoing
transition has no label. Figure 5.4 shows an example of this: State 4 is reachable by each
of the states 1 to 3 by calling one of the methods a, b or c.

State 1

State 2 State 4

State 3

a

b

c

Figure 5.4: Junction pseudostate

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 33/136

Initial pseudostates have only one outgoing transition and indicate the first active state
in a region[31, p. 556f]. They are used to redirect transitions targeted at composite states.
Initial states of regions owned directly by the state machine itself are not treated in this
approach. They indicate that the monitoring of the application starts with the first method
call and can be easily modeled using entry-points.

A terminate pseudostate indicates the end of running the state machine. Upon reaching
a terminal state, no methods can be called. Note that this case is different than reaching
an exit point. Here the call of an outgoing transition of an entry point does not start the
monitoring again.

Fork pseudostates are used to split an existing transition into several ones, which each
has its target in a different region of a composite state. The opposite of a fork state
is a join state, which combines outgoing transitions from orthogonal regions into one
transition[31, p.557]. Since orthogonal regions are not supported by this approach there
is no need to implement any support for fork and join states.

Choice states are used in order to implement dynamic conditional branches. This means
that during runtime guards of transitions leaving choice states are evaluated and depend-
ing of the outcome a branch may be created[31, p. 557]. Choice states are not supported
by this approach, because the evaluation of guards has not been implemented.

5.2.2 Transformation of a UML state diagram

While monitoring an application, it is important that performance loss of the application is
as minimal as possible. Due to this, the monitor has to quickly decide if a method call is
allowed at a specific point of the execution of the application.

As will be shown in Section 5.3 the monitor receives the state diagram in the form of a
.xmi file. Working on this often complex representation is very expensive and contradicts
the desired performance of the monitor. Therefore, it is necessary to transform the state
diagram into an internal representation, which only contains the data needed for the
validation of method calls.

The internal representation of the diagram consists of states and allowed method calls
triggering the transitions. The target state of a transition can easily be determined for
every model element type of state diagrams, except for history states. The target of
history states is not determined by the diagram, but rather by the previous execution
of the program. During transformation, the transitions targeting history states and thus
affected by outgoing transitions of the composite state containing the history state are
identified. Their target is set to the state active when the composite state is reached for
the first time. Upon leaving the composite state, the target of all transitions leading into
the according history state is changed. For this purpose a list of affected transitions is
added to all transitions leaving the composite state. If a method linked to an outgoing
transition of the composite state is called, the target of all affected transitions is changed
to the state activated by reaching the history state. An example of this transformation is
shown in Figure 5.5.

An advantage of this approach is that it reduces the complexity of the model, because
the number of states in the internal representation is equal to or lower than the number

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 34/136

Figure 5.5: UML State Diagram And Petri Net Transformation

of states in the original model. Furthermore, the lists of affected transitions are only
created once for each transition and do not have to be modified during the execution of the
application. Only the targets of the affected transitions have to be changed. Therefore,
the number of overall transitions in the model stays the same.

5.3 Implementation

This section describes the monitoring process. After the monitor has been initialized, the
given UML state machine is transformed to the internal representation. The application
is launched and bytecode instrumentation is performed. Following this, each monitored
method call can be validated against the state machine.

5.3.1 Monitor Initialization

To start the monitoring process, the Java VM hosting the target application is executed
with an additional parameter:

java monitoredApplication -javaagent:sdmonitor.jar=model.uml

The name of the Java class implementing the monitor is located after the -javaagent

parameter, all statements after the equals sign are treated as parameters to the agent.
In this case model.uml is the file containing the model used for validating the application.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 35/136

Before the application is executed the Java VM calls the premain method of the agent

class. Then the agent class loads the model specified in the argument and transforms it
into the internal representation. Afterwards an instance of the monitor class is created
and the internal model forwarded to it.

5.3.2 Internal Model Representation and Transformation

The internal model is depicted in Figure 5.6. The model class contains all the states of the
model and provides a method doCall used to validate method calls. Additionally, Model
has the attributes currentState and idleState. idleState defines the state which is
initially active before the monitoring of the application starts. currentState defines the
active state of the model and is changed to the target of a transition after each successful
call of the doCall method.

States are represented by the class State. It contains two lists of allowed method
calls. The list allowedCalls contains the names of all complete allowed method calls,
while allowedGroups contains the names of allowed groups of methods. The method
addAllowedCall is used to add complete method names or group of methods to their
respective lists.

The class MethodCall represents the transitions of the UML state diagram. Since two
states are linked by a method, the names of the linked states are contained in the at-
tributes sourceState and targetState. As described in Section 5.2.2 it is possible to
change the target of a method call. For this purpose, the method setTargetState is
used. To determine which methods are affected by a called method, all affected methods
are listed in affectedCalls.

During the transformation process, for all states without substates an instance of State
is created and added to the internal model. If a state contains substates, these are
processed recursively. Afterwards, the transitions of each entry-point are added to a new
state called start, which is set to be the currentState and idleState of the model.

For each transition a MethodCall object is created and added to the list of allowed meth-
ods of the source state. If the source of a transition is a composite state, the transition is
added to all substates. Determining the target of a transition is more difficult. If the target
of a transition isn’t a simple state the target is determined as described in Section 5.2.1.
Transitions targeted at history states are added to the list historyTransitions. It is used
to add methods to the list affectedCalls.

In the next phase the comments of the state diagram are processed. All specified meth-
ods in the comments are added to the lists of allowed methods in all states linked with the
comment. If a comment is linked to a composite state, the methods are added recursively
to all substates.

5.3.3 Bytecode Instrumentation

After model transformation the initialization of the monitor is finished and the application
is launched. When the classes of the application are loaded, bytecode instrumentation is
performed by the monitor using the package java.lang.instrument[36]. It identifies all

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 36/136

package de.christoph_schlueter.sdmonitor

Constants

(from sdmonitor)

+PACKAGENA... : String = "de.christoph_schlueter.sdmo...

+COMMENT_START : String = "allowed:"

Monitor

(from sdmonitor)

- logger : Logger = Logger.getLogger(Monitor.class)

-abort : boolean

+getInstance () : Monitor

+monitorEvent (me : MonitorEvent)

+setModel (model : Model)

+getModel () : Model

+setAbort (abort : boolean)

+isAbort () : boolean

Agent

(from sdmonitor)

- logger : Logger = Logger.getLogger(Agent.class)

+premain (agentArgs : String, inst : Instrumentation)

model

(from sdmonitor)

Model

+setIdleState (idleState : State)

+addState (s : State)

+setCurrentState (currentState : State)

+getCurrentState () : State

+doCall (name : String) : boolean

+toString () : String

+getDotNotation () : String

+getGraphML () : String

+getAllMethodNames () : HashSet

MethodCall

-methodName : String

+addAffected (affectedCall : MethodCall, newTarget : State)

+getAffected () : HashMap

+getSourceState () : State

+getMethodName () : String

+getTargetState () : State

+setTargetState (target : State)

+toString () : String

+getDot () : String

+getGraphML () : String

State

-name : String

+addAllowedCall (methodCall : MethodCall)

+getTarget (name : String) : State

+getMethodCall (name : String) : MethodCall

+getName () : String

+toString () : String

+getDotNotation () : String

+getGraphML () : String

+getMethodNames () : HashSet

-getKeyForGroup (entry : String) : String

bci

(from sdmonitor)

MethodEditor

- instrumentAll : boolean

-methodList : HashSet

+edit (m : MethodCall)

-getCallstring (attribute : String) : String

- insertNotification (m : MethodCall)

MonitorEvent

-source : String

- target : String

-method : String

+getSource () : String

+setSource (source : String)

+getTarget () : String

+setTarget (target : String)

+getMethod () : String

+setMethod (method : String)

TransformClass

- logger : Logger = Logger.getLogger(TransformClass.class)

-classPool : ClassPool

+tra... (loader : ClassLoader, cn : String, classBeingRedefined : Class, prote...

importer

(from sdmonitor)

XMIFile

-model : Package = null

+getStateMachine () : StateMachine

+getStateMachines () : ArrayList

Util

+getSubElementsByCl... (element : Element, elementClass : EClass) : Ar...

Transformer

-simpleStates : HashMap

-historyTransitions : LinkedList

-exitingCalls : LinkedList

- commentList : HashMap

-statemachine : StateMachine

+getModel () : Model

-processVertex (vertex : Vertex)

-processTransitions (vertex : Vertex)

-addAllTransitions (source : Vertex, vertex : Vertex)

- isExiting (source : Vertex, target : Vertex) : boolean

-getTargetState (transition : Transition) : State

-processHistory (sourceVertex : Vertex, name : String, targetVertex : Vert...

-addHistoryCall (sourceVertex : Vertex, name : String, targetVertex : Vert...

- isShallow (vertex : Vertex) : boolean

-getVertexFromState (state : State) : Vertex

-getInitialState (state : State) : State

-getSuperStates (state : Vertex) : LinkedList

-getSuperState (state : Vertex) : Vertex

-hasHistory (vertex : Vertex) : boolean

-getCommentList () : HashMap

-processComme... (vertex : Vertex, superstateComments : LinkedHash...

-instance

<<use>>

-model

<<use>>

<<use>>

<<use>>

-sdModel

-states1..*-idleState-currentState

-affectedCalls*

-sourceState-targetState

-allowedCalls* -allowedGroups*

-startState

-terminalState

<<use>>

-methodEditor

<<use>>

Figure 5.6: Class diagram of the internal model

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 37/136

method calls in the bytecode of the class which shall be monitored and replaces them with
a method call to the monitor and the original method call. The argument of the monitor
method call is a MonitorEvent object, which indicates which method of which class the
application is going to execute and which class performs the method call.

5.3.4 Method Call Validation

The instrumentation of the bytecode guarantees that the monitor is informed about each
method the application is going to call. To validate a method call it is forwarded to the
internal model. If the model can perform a valid transition (depending on the current value
of currentState), currentState is updated and the method is considered to be allowed
at this point in program execution. Otherwise no transition is performed in the model and
the error is logged and/or the monitored application is terminated.

To ensure that all classes of the application are able to inform the monitor about called
methods it is necessary to associate the monitor to the classes. Since it would be incon-
venient to create a global instance of the monitor and a reference to it in all classes, the
monitor is implemented as a singleton[18].

5.4 Evaluation

As mentioned in Section 5.2.2 it is important to keep the performance loss of an applica-
tion while monitoring to a minimum. Therefore, it is interesting to know how much time the
presented monitor needs to validate a method call. For this purpose, we create a simple
benchmark, which measures the time needed to execute the method Math.cbrt(time).
The benchmark is executed twice, once with the application running by itself and once
while the monitoring application is active. To initialize the monitor we create a simple UML
state diagram consisting of one entry- and one exit-point linked to each other by a transi-
tion. Before and after the method is called the method System.nanoTime() is used to get
(relatively) accurate timestamps of the system. The difference between the timestamps
equals the time needed for the execution of the method. If we compare the computed
values, we can easily calculate the loss of performance caused by the monitor.

Note that the timestamps given by System.nanoTime() are not completely accurate and
can fluctuate in the region of microseconds depending on the operating system[21]. To
reduce the effect on the benchmark, it is common to measure the time needed for thou-
sands of method calls and to deduce the time needed for one. In this case we measure
the time needed to execute 100 000 and 1 000 000 method calls on a four year old sys-
tem1. Furthermore, executing accurate benchmarks is difficult, because the Java VM
optimizes code during runtime. These difficulties and possible solutions are described by
Brent Boyer in Robust Java benchmarking[5].

Table 5.2 shows the results of both benchmarks. We can deduce that monitoring an
application needs approximately 0.62 ms per monitored method call. Although a very
simple state diagram was used, this value should be relatively stable for larger diagrams,

1Intel Core2 Duo E6550 2,33 GHz; 6 GB RAM; Windows 7 64 Bit; JRE 6

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 38/136

100 000 iterations 1 000 000 iterations

monitor state idle active idle active

run time [ms] 182 691 244 376 1 816 806 2 432 705

run time/iteration [ms] 1,826 2,443 1,816 2,432

Table 5.2: Measurement results of the benchmark

because the validation of a method call is performed using a hashmap and occurs in con-
stant time[34]. The only exception from this rule is a transition leaving a composite state
containing a history state, since the target of all affected transitions has to be updated.

Note that the percental increase in runtime is very high (in this example 33.9%). This
value depends highly on the number of monitored method calls and the time needed to
perform a method without monitoring. In this example a simple method was used and
all calls were monitored. Therefore, the overhead caused by the monitor can be signifi-
cantly smaller in larger applications, where only a portion of time consuming methods is
monitored.

5.5 Application

In this section a short application example is described for the use of the presented mon-
itor. Based on the examples in the Java Cryptography Architecture (JCA) Reference
Guide [33] the application is supposed to load a text from a file, encrypt it using the DES
algorithm and save the ciphertext to a file with the same name as the input file and the ad-
ditional ending .encrypted. The name of the file containing the plaintext and the key used
for encryption are given to the application as command line parameters. The methods
readFile and saveFile perform the corresponding actions, while desCipher.doFinal

creates the ciphertext. In this example the monitor shall ensure that the file is only saved
after it has been encrypted. This requirement makes more sense, if we imagine the
plaintext being entered by a user (e.g. a password) and we want to prevent to store the
plaintext in a file where it could be compromised by other programs or users. To initialize
the monitor, the simple state diagram depicted in Figure 5.7 is used. Note that only the
methods present in the diagram are monitored. Other methods can be called arbitrarily.
In this test the application encrypts a .JPG file with a size of 4744 kB.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 39/136

state machine EncryptFileStateMachine

file read file encryptedEncryptFile.readFile EncryptFile.saveFilejavax.crypto.Cipher.doFinal

Figure 5.7: Diagram used for monitoring the encryptFile application

If we configure the logging framework to create messages for each method call the output
of the monitor resembles:

[...] DEBUG [...] Agent: instrumentAll=false, abortOnError=false

[...] DEBUG [...] Monitor: valid call: EncryptFile.readFile

[...] DEBUG [...] Monitor: valid call: javax.crypto.Cipher.doFinal

[...] DEBUG [...] Monitor: valid call: EncryptFile.saveFile

It is apparent, that the application works correctly. If we comment out the call of the
method aesCipher.doFinal in the source code we get a different output from the monitor:

[...] DEBUG [...] Agent: instrumentAll=false, abortOnError=false

[...] DEBUG [...] Monitor: valid call: EncryptFile.readFile

[...] ERROR [...] Monitor: invalid call: EncryptFile.saveFile

Note that in this case, the invalid method call is marked with the label ERROR and would
be printed even if we would suppress the output of all DEBUG messages. If the flag
abortOnError was set, application execution would stop before saveFile is performed.
Executing the program takes 703480 ms. Activating the monitor leads to a runtime of
723165 ms, which is equal to an increase of only 2.8%. Combined with the results of
Section 5.4, this example shows how the increase in runtime is highly dependent on the
monitored application. Therefore it is necessary to perform a runtime analysis in the
context of the actual application to be monitored.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 40/136

6 Log-Based Monitoring of Processes

The in-line monitoring presented in the previous chapter is a suitable approach to en-
force that a secure system behaves according to the specification that was verified with
UMLsec, and the CARiSMA tool, respectively. However, some systems cannot be moni-
tored that easily, e.g. if the system is not directly accessible as in the case of embedded
systems or smart cards such as the Global Platform [1]. Here, the system is on a chip
where monitoring approaches are too expensive in terms of runtime and memory usage.
Here, we should be able to monitor a system from outside. This means, that events are
logged into a log file, e.g. the commands sent by a host to a of a smart card or the re-
spective responses. This log file can then be checked to be conform with the expected
behaviour of the system. This approach is called offline monitoring [20].

Conformance checks between log files and expected behaviour are well-known for busi-
ness processes [49]. Here we make use of business process management, which in-
cludes such analysis [6]. By analyzing event logs, the control flow of an executed busi-
ness process can be reconstructed [52]. The challenge here is to create process models
from the event logs, such that these models correspond to the dynamic process at run-
time [51]. The procedure of extracting specific information from system log files at run-
time may be defined as Process mining. The ProM framework, which will be discussed
in detail in Section 6.1, supports plug-in based implementation of such process mining
techniques. Furthermore, it supports various analysis plug-ins, one of which is the Con-
formance Checker plug-in. Given a Petri net model, this plug-in is used to determine the
degree of conformance of a running system to the given model.

It is worth to be mentioned that this approach is general enough that it even allows us to
develop secure systems in the large. In this case we have systems that are composed
from several components. While each component can be monitored individually, e.g. by
using the approach in Chapter 5, the overall system has to be monitored on a different
level, i.e. from outside, similar to smart cards in the Global Platform scenario.

However, in case of the philosophy of model-driven development UML is the de-facto
standard for modeling. That is, why UMLsec and UMLchange are suitable for security
analysis of design model, even if evolution occurs. UML activity diagrams are the lan-
guage of choice. They are the equivalent UML counterparts of petri nets. Thus we have
realized a CARiSMA plug-in that transforms activity diagrams into petri nets. Therefore,
the plug-in utilizes triple graph grammars [41]. A definition of each grammar rule is given,
as well as a description of the transformation algorithm based on these individual rules.
The implementation of the transformation algorithm as a CARiSMA plug-in is illustrated.
Finally, an example based on the GlobalPlatform shows the application of the concept of
log-based monitoring.

6.1 The ProM Framework

Various scientific and commercial tools to extract information from log events to perform
process mining are being developed in the context of business activity monitoring (BAM)

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 41/136

and business process intelligence (BPI)[50]. However, these tools use various file for-
mats. This makes it very difficult to use different sets of tools on the same datasets
and compare the various process mining results [4]. Furthermore, some of these tools
implement concepts which might be of use for other tools. But because of the lack of
standardization of these tools, researchers working on new process mining techniques
are forced to develop completely new mining infrastructures. To overcome these prob-
lems, the ProM framework was developed [4]. ProM accepts various file formats for both
input and output files and supports the reuse of existing concepts for the implementation
of new process mining techniques.

ProM features a plug-in based architecture. Plug-ins to perform imports, exports, con-
versions, analysis and mining can be developed and integrated into the ProM framework.
The advantage of this feature is that the framework itself does not need to be modified. In
order to add a new plug-in, only the name and path of the plug-in has to be added to the
ini-file. Another feature of the ProM framework is the interoperability between the various
plug-ins. The results generated by using the plug-in can be used as input for another
plug-in.

Figure 6.1 gives an overview of the ProM framework. XML files are read by the Log
Filter component which enables filtering and processing of large datasets. Input Plug-ins
provide support for various models, e.g. Petri nets. Mining Plug-ins perform the actual
process mining and store their results in the Result Frames. These frames may be used
as visualizations as well as an input for various Analysis Plug-ins. The Conversion Plug-
ins transform the mining results to and from various formats like EPCs or Petri nets.

Figure 6.1: Overview of the ProM framework [4]

One of the Analysis Plug-ins of particular interest for the monitoring of evolving systems is
the Conformance Checker plug-in. Conformance checking describes the ability to verify

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 42/136

how much a process model coincides with a process in execution. To facilitate this, the
Conformance Checker makes use of various metrics to measure the degree of conformity
of a given process model in form of a Petri net to a process in execution by extracting
information from its log files, and comparing these log events to the process model.

6.2 Conversion of Activity Diagrams to Petri Nets

As already stated in the introduction of this chapter, the models to specify evolving sys-
tems are UML models. To make use of the Conformance Checker plug-in of the ProM
framework, these models, in this case UML activity diagrams, need to be converted into
Petri nets. To facilitate the conversion, we make use of a triple graph grammar (TGG)
[48]. A triple graph grammar defines a relationship between two graphical models [28] by
specifying a set of rules to transform one model type into the other.

A TGG rule can be divided into three components as shown in Figure 6.2. The left
component represents the source model. The component in the middle maps the left
component to the right component (correspondency mapping), and the right component
represents the transformed model.

Figure 6.2: TGG Transformation of an UML activity diagram to Petri net [48]

For the conversion of an UML activity diagram into a Petri net, 6 TGG rules are defined
in [48]. To alleviate the rule definition, various activity diagram elements were classified
in groups. Start nodes, decision nodes, merge nodes and end nodes were classified as
control nodes. Action nodes, and fork or join nodes were classified as executable nodes.
Finally, edges between control nodes were classified as exception edges. The TGG rules
cover all basic UML activity diagram elements.

The 6 TGG rules are defined as follows:

• Rule1: Add a new control node
• Rule2: Add a new executable node
• Rule3: Add a new edge
• Rule4: Add a new exception edge
• Rule5: Add an edge between an executable node and a control node
• Rule6: Add an edge between a control node and an executable node

These rules are illustrated in Figures 6.3 to 6.8 and described into further detail. Each rule
defines which Petri net element corresponds to the specified activity diagram element.

Rule 1 states that adding a control node to an activity diagram, corresponds to adding a
place to a Petri net.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 43/136

Figure 6.3: Rule1: Add a new control node [48]

Rule 2 states that adding an executable node to an activity diagram, corresponds to
adding a transition to a Petri net.

Figure 6.4: Rule2: Add a new executable node [48]

Rule 3 and 4 are a bit more complex. Rule 3 states that adding an edge between two
action nodes in an activity diagram, corresponds to an edge between a transition and
a place, and an edge from that place to a second transition in a Petri net. The two
transitions connected by the two edges and a place between those edges, correspond to
the action nodes in the activity diagram.

Figure 6.5: Rule3: Add a new edge [48]

Rule 4 states that an exception edge in an activity diagram (i.e. an edge between two
control nodes), corresponds to an edge from a place to a transition and an edge from
that transition to a second place. The two places, connected by the two edges and the
transition between those edges, correspond to the control nodes in the activity diagram.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 44/136

Figure 6.6: Add a new exception edge [48]

Rule 5 states that an edge from an executable node to a control node in an activity
diagram corresponds to an edge from a transition to a place in a Petri net.

Figure 6.7: Rule5: Add an edge between an executable node and a control node [48]

Rule 6 is the counterpart of Rule 5. It states that an edge from a control node to an
executable node in an activity diagram corresponds to an edge from a place to a transition
in a Petri net.

Figure 6.8: Rule6: Add an edge between a control node and an executable node [48]

These 6 TGG rules were implemented as illustrated by the algorithm convertA2P (see

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 45/136

Algorithm 1). ConvertA2P operates by beginning with the start node of an activity dia-
gram, and then traversing recursively over each activity diagram element, applying each
corresponding TGG rule. The applicable TGG rules are determined by the If-Statements
in line 3, 6, 12, 16, 20 and 24 which check the corresponding criteria. The algorithm ter-
minates if the end node was reached. Since activity diagrams may be cyclic, an infinite
loop may occur. To prevent this, the algorithm checks if the Petri net element generated
for the current activity diagram element, already exists in the Petri net (Line 1 in each
rule).

Algorithm 1 convertA2P

1: if endNode is reached then
2: return
3: else if currentElement = (JunctionNode or FinalNode or InitialNode) then
4: apply Rule1
5: return
6: else if currentElement = (ActionNode or ForkNode or JoinNode) then
7: apply Rule2
8: return
9: else if currentElement is Edge then

10: source = source of currentElement
11: target = target of currentElement
12: if (source = ActionNode AND target = (ActionNode or ForkNode JoinNode)) or

(source = ForkNode AND target = (ActionNode or JoinNode)) or (source = JoinN-
ode AND target = (Action Node or Fork Node)) then

13: apply Rule3
14: return
15: end if
16: if (source = InitialNode AND target = JunctionNode) or (source = JunctionNode

AND target = (JunctionNode or FinalNode)) then
17: apply Rule4
18: return
19: end if
20: if (source = ActionNode AND target = (FinalNode or JunctionNode)) or (source =

ForkNode AND target = (FinalNode or JunctionNode)) or (source = JoinNode AND
target = (FinalNode or JunctionNode)) then

21: apply Rule5
22: return
23: end if
24: if (source = InitialNode AND target = (ActionNode or ForkNode)) or (source =

JunctionNode AND target = (ActionNode or ForkNode or JoinNode)) then
25: apply Rule6
26: return
27: end if
28: end if

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 46/136

6.3 CARiSMA Check (Activity to Petri Net Converter)

The algorithm described in the previous section has been implemented as a CARISMA
check, the activity2petrinet converter. The implementation can roughly broken down into
four steps. First, the source UML model has to be loaded and accessible, which proved to
be fairly easy, as CARiSMA is based on the Eclipse Modeling Framework and provides,
among other modelling languages, an implementation of the UML2 metamodel.

Secondly, the implementation of a data structure to store the converted Petri net was re-
quired. Simple Petri nets, as used in the scope of this work, consist of a set of places and
transitions, connected by edges. Hence a simple data structure to accommodate these
requirements has been developed. Each Petri net object contains a list of place, transi-
tion and edge objects. Each object possesses a unique ID and an attribute describing
the object type. In addition to the ID and attribute, edge objects store information about
source and target nodes.

Finally, the converted Petri net has to be exported into the PNML format, a standard sup-
ported by most Petri net tools. PNML is an exchange format based on XML. It was de-
veloped to support the diverse requirements of the various Petri net types [40]. Though a
framework implementing the international Petri net standard ISO/IEC 15909 [30] already
exists, we implemented our own PNML export function to benefit from the simplicity of
the used Petri net data structure. The Petri net framework would simply increase the
complexity and runtime of the plug-in.

To run the CARiSMA check, a new CARiSMA analysis on a model containing an activity
diagram has to be created. After adding the ’activity2petrinet’ check and providing the
output file parameter, i.e. the file name and path of the resulting petri net, the conversion
is started by simply clicking the ’Run’ button.

6.4 Application

Finally we like to conclude this chapter by demonstrating the application of the described
concept of log based monitoring. For demonstrative purposes, the process of loading of
an application to a GlobalPlatform card, as specified in the GlobalPlatform Card Specifi-
cation Version 2.2 is used. The load and install process was modeled as an UML activity
diagram illustrated in Figure 6.9.

The process is started by selecting a security domain. A security domain is the on-card
entity providing support for the control, security, and communication requirements of an
off-card entity, e.g. the card issuer, an application provider or a controlling authority. Then
the INSTALL [for load] command followed by one or more LOAD commands processed by
the security domain is executed. The process is completed by running the INSTALL [for
install] command, which is also processed by the security domain and then passed to the
central on-card administrator that owns the GlobalPlatform Registry for further verification
and processing.

We developed a java program to simulate the back end system that hosts the GlobalPlat-
form system, responsible for loading an Application to a GlobalPlatform card as described

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 47/136

above. This simulation program logs the executed commands and writes them to a log
file. These log files describe the application flow. To verify if the system at runtime corre-
sponds to the modeled specifications, the CARiSMA activity to Petri net converter check
can be used to convert the specified model (Figure 6.9) into a Petri net. The resulting
Petri net after the conversion is shown in Figure 6.10.

Finally, ProM loads the Petri net model and uses its Conformance Checker plug-in to
measure the degree of conformance to the specification. Figure 6.11 shows part of the
result view for the Advanced Behavioral Appropriateness metric, one of several metrics
which the Conformance Checker supports to measure the degree of conformance.

Figure 6.9: Activity Diagram specifying the load Application process of a GP card

Figure 6.10: The resulting Petri net after the conversion

Figure 6.11: Result for the Advanced Behavioral Appropriateness metric

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 48/136

7 Conclusions

In this deliverable, we have reported about the results of Work Package 4 in Year 3
of SecureChange. The notation for describing possible evolutions of UML models has
been improved into the UMLchange profile for UML. The notation was thereby decoupled
from the security aspects defined in UMLsec in order to have separation of concerns
which leads to better maintainability in the first place. Furthermore, the description of
evolutions became more expressive and easier to handle. Together with the new notation,
we have implemented a new analysis tool CARiSMA that allows developers to check
security properties on their models and especially, if evolution is considered. It has been
shown in the validation and in the feedback from project partners, that it was a good
decision to re-develop the old tool and migrate it onto EMF to make it compatible with
other tools and UML2. In addition, export functionality has been implemented to integrate
the model-based verification approach with the model-based testing approaches of WP7.

As counterpart to the security analysis at design time, we have developed monitoring
approaches to ensure secure behaviour also at runtime. Both, in-line and off-line moni-
toring, has been considered. Our in-line monitoring approach instruments Java byte code
in order to supervise all relevant method calls and performs a conformance check against
a UML state chart describing the intended behaviour. In case of violations the monitored
application can be stopped. The off-line monitor was realized in a way that the intended
behaviour given as UML activity diagram is transformed into a petri net that can then be
compared to the process (also a petri net) that is mined from an runtime log of a system.

Continuing research is a topic of future work although it goes beyond the SecureChange
project. Our first approaches towards difference-based evolution analysis should be
deepened, as we think that from practical point this is an promising approach, however,
the question of reliability is still to be answered. Also the monitoring approaches are
planned to be brought into industrial practice. The monitors generated from UML state
charts, for instance, could be improved so that they will capture field access (and thus
data flow) in future as well. Both the evolution analysis and the monitoring can be ex-
tended to further notations such as BPMN for business process modeling, which makes
the approaches attractive for new fields of application.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 49/136

Bibliography

[1] Global platform specification. http://www.globalplatform.org/specificationscard.asp, May
2011.

[2] Andreas Bauer and Jan Jürjens. Runtime verification of cryptographic protocols. Computers & Security,
29(3):315–330, 2010.

[3] Andreas Bauer, Jan Jürjens, and Yijun Yu. Run-time security traceability for evolving systems. The
Computer Journal, 54(1):58–87, 2011.

[4] H.M.W. Verbeek A.J.M.M. Weijters B.F. van Dongen, A.K.A. de Medeiros and W.M.P. van der Aalst. The
prom framework: A new era in process mining tool support, applications and theory of petri nets 2005.
Lecture Notes in Computer Science, Volume 3536/2005, 1105-1116, 2005.

[5] Brent Boyer. Robust Java benchmarking, Part 1: Issues.

[6] Patrice Briol. The Business Process Modeling Notation Pocket Handbook. Lulu, 2008.

[7] Séverine Colin and Leonardo Mariani. 18 run-time verification. In Model-Based Testing of Reactive
Systems, volume 3472 of Lecture Notes in Computer Science, pages 525–555. Springer, 2005.

[8] Lieven Desmet, Wouter Joosen, Fabio Massacci, Pieter Philippaerts, Frank Piessens, Ida Siahaan, and
Dries Vanoverberghe. Security-by-contract on the .net platform. Information Security Technical Report,
13(1):25 – 32, 2008.

[9] TU Dortmund. CARiSMA Website.
http://carisma.umlsec.de.

[10] Eclipse.org. Extension points/extensions resources.
http://www.eclipse.org/resources/?category=Extension%20points.

[11] Eclipse Foundation. Eclipse modeling framework.
http://eclipse.org/modeling/emf/.

[12] Eclipse Foundation. Eclipse website.
http://www.eclipse.org/.

[13] Eclipse Foundation. EMF compare.
http://www.eclipse.org/emf/compare/.

[14] Eclipse Foundation. Papyrus MDT Website.
http://www.eclipse.org/modeling/mdt/papyrus/.

[15] Eclipse Foundation. UML2 Metamodel EMF Implementation.
http://www.eclipse.org/modeling/mdt/?project=uml2.

[16] Elizabeta Fourneret, Fabrice Bouquet, Frédéric Dadeau, and Stéphane Debricon. Selective test gen-
eration method for evolving critical systems. In REGRESSION’11, 1st Int. Workshop on Regression
Testing - co-located with ICST’2011, Berlin, Germany, March 2011. IEEE Computer Society Press. To
appear.

[17] Elizabeta Fourneret, Martin Ochoa, Fabrice Bouquet, Julien Botella, Jan Jürjens, and Parvaneh Yousefi.
Model-based security verification and testing for smart-cards. In ARES 2011, 6-th Int. Conf. on Avail-
ability, Reliability and Security, Vienna, Austria, August 2011.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Entwurfsmuster. Addison-Wesley, 6
edition, 2010.

[19] Object Management Group. MetaObject Facility.
http://www.omg.org/mof/.

[20] Klaus Havelund and Grigore Rosu. An overview of the runtime verification tool java pathexplorer. Formal
Methods in System Design, 24:189–215, 2004. 10.1023/B:FORM.0000017721.39909.4b.

[21] David Holmes. Inside the Hotspot VM: Clocks, Timers and Scheduling Events - Part I - Windows.

[22] IBM. IBM Rational Software Architect Website.
http://www-01.ibm.com/software/rational/products/swarchitect/.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 50/136

http://www.globalplatform.org/specificationscard.asp
http://carisma.umlsec.de
http://www.eclipse.org/resources/?category=Extension%20points
http://eclipse.org/modeling/emf/
http://www.eclipse.org/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.omg.org/mof/
http://www-01.ibm.com/software/rational/products/swarchitect/

[23] No Magic Inc. MagicDraw Website.
https://www.magicdraw.com/.

[24] J. Jürjens. Secure Systems Development with UML. Springer-Verlag, 2005.

[25] J. Jürjens and M. Ochoa. Model-based security engineering for evolving systems (invited lecture). 11th
School on Formal Methods (SFM 2011), Bertinoro (Italy) 13-18 June 2011.

[26] Jan Jürjens, Loïc Marchal, Martín Ochoa, and Holger Schmidt. Incremental Security Verification for
Evolving UMLsec models. In Proc. of the 7th European Conference on Modelling Foundations and
Applications, Birmingham, UK (ECMFA’11), pages 52–68, 2011.

[27] Jan Jürjens, Yijun Yu, and Andreas Bauer. Tools for traceable security verification. In BCS International
Academic Conference, pages 367–390, 2008.

[28] Ekkart Kindler and Robert Wagner. Triple graph grammars: Concepts, extensions, implementations,
and application scenarios. Technical Report tr-ri-07-284,Department of Computer Science, University
of Paderborn, 2007.

[29] Johannes Kowald. Differenzberechnung zur Unterstützung modellbasierter Sicherheitsaalyse von Soft-
wareevolution. Bachelor Thesis, TU Dortmund, Germany (in German), 2011.

[30] L. Petrucci L. Hillah, F. Kordon and N. Treves. PNML Framework: an extendable reference implemen-
tation of the Petri Net Markup Language. Petri Nets 2010, LNCS 6128, pages 318-327., 2010.

[31] Object Management Group. OMG Unified Modeling Language (OMG UML), Superstructure, May 2010.

[32] OMG. Current OMG OCL specification.
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL.

[33] Oracle. Java Cryptography Architecture (JCA) Reference Guide.

[34] Oracle. Java java.util.HashMap API.

[35] Oracle. Java Virtual Machine Tool Interface (JVM TI) Reference.

[36] Oracle. java.lang.instrument Package.
http://docs.oracle.com/javase/6/docs/technotes/guides/instrumentation/index.html.

[37] Oracle. NetBeans MDR API.
http://netbeans.org/download/5_0/javadoc/org-netbeans-api-mdr/.

[38] Alfredo Pironti and Jan Jürjens. Formally-based black-box monitoring of security protocols. In ESSoS,
pages 79–95, 2010.

[39] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and System Secu-
rity, 3(1):30–50, February 2000.

[40] E. Schnieder. Entwurf Komplexer Automatisierungssysteme. EKA 2006, 9. Fachtagung, Braunschweig,
Germany, May 2006, pp. 35-55., 2006.

[41] Andy Schürr. Specification of graph translators with triple graph grammars. In Ernst Mayr, Gunther
Schmidt, and Gottfried Tinhofer, editors, Graph-Theoretic Concepts in Computer Science, volume 903
of Lecture Notes in Computer Science, pages 151–163. Springer Berlin / Heidelberg, 1995. 10.1007/3-
540-59071-4_45.

[42] SecureChange. Deliverable 4.1, 2010.
http://securechange.eu/content/deliverables.

[43] SecureChange. Deliverable 4.2, 2011.
http://securechange.eu/content/deliverables.

[44] SecureChange. Deliverable 1.3, 2012.
http://securechange.eu/content/deliverables.

[45] SecureChange. Deliverable 7.4, 2012.
http://securechange.eu/content/deliverables.

[46] Open Source. ArgoUML Website.
http://argouml.tigris.org/.

[47] Open Source. Topcased Website.
http://www.topcased.org.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 51/136

https://www.magicdraw.com/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://docs.oracle.com/javase/6/docs/technotes/guides/instrumentation/index.html
http://netbeans.org/download/5_0/javadoc/org-netbeans-api-mdr/
http://securechange.eu/content/deliverables
http://securechange.eu/content/deliverables
http://securechange.eu/content/deliverables
http://securechange.eu/content/deliverables
http://argouml.tigris.org/
http://www.topcased.org

[48] A. Spiteri Staines. A triple graph grammar mapping of uml 2 activities into petri nets. INTERNATIONAL
JOURNAL OF COMPUTERS, Issue 1, Volume 4, 2010.

[49] T.H.Davenport and J.E. Short. The new industrial engineering: Information technology and business
process redesign. Sloan Management Review, Vol. 31 No.4, S. 11-27., 1989.

[50] A. Weijters B. Vandongen A. Alvesdemedeiros W. van der Aalst, H. Reijers and H. Verbeek M. Song.
Business process mining: An industrial application. Information Systems, Vol. 32, No. 5, pp. 713-732.,
2007.

[51] A.J.M.M. Weijters W.M.P. van der Aalst. Process mining: a research agenda. Computers in Industry,
Vol. 53, No. 3, pp. 231-244., 2004.

[52] C. Gunther A. Rozinat H. M. W. Verbeek W.M.P. Van Der Aalst, B.F. Van Dongen and A. J. M. M.
Weijters. ProM: The Process Mining Toolkit. BPM’09 2(Demonstration Track). CEUR-WS.org, 2009.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 52/136

A Appendix

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 53/136

A.1 CARiSMA Plugin List

Plugin name Description
de.umlsec.tool.core The core Tool (GUI, etc.)
de.umlsec.tool.evolution Evolution support
de.umlsec.tool.evolution.uml2 UML2 specific evolution support
de.umlsec.tool.evolution.uml2.umlchange UMLchange Parser Extension
de.umlsec.tool.evolution.emfdelta Delta generator based on EMFcompare

(cf. Section 3.3)
de.umlsec.tool.ocl Re-usable methods for the OCL support
de.umlsec.tool.ocl.library Model to manage OCL Constraints
de.umlsec.tool.ocl.library.edit Edit part for de.umlsec.tool.ocl.library
de.umlsec.tool.ocl.library.editor Editor for de.umlsec.tool.ocl.library
de.umlsec.modeltype.uml2 UML2 meta model
de.umlsec.profile.umlchange UMLchange profile
de.umlsec.profile.umlsec UMLsec profile
de.umlsec.check.activity2petrinet Converts an activity diagram to a petri net

(cf. Chapter 6)
de.umlsec.check.activitypaths Prints out all possible paths in an activity

diagram
de.umlsec.check.oclcheck Queries general EMF models with de-

fined OCL constraints
de.umlsec.check.smartcard Check for smartcard specific properties
de.umlsec.check.smartcard.evolution Smartcard Evolution Check
de.umlsec.check.statemachinepaths Prints out all possible paths in a state

chart
de.umlsec.check.staticcheck Checks for the static UMLsec stereotypes
de.umlsec.check.staticheck.evolution Checks for static Smartcard Evolution

content
de.umlsec.check.template Template for creating CARiSMA plugins
de.umlsec.check.emfdelta Plugin to test the EMF-Delta support

Table A.1: CARiSMA Plugins

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 54/136

A.2 UMLchange Profile Diagram

Figure A.1: The UMLchange Profile

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 55/136

A.3 UMLchange Grammar Keys and Values

Metaclass Key(s) Type Description
all named elements name String model element name

visibility Enumeration public, private,
protected or package

Property
(Tagged Value)

value String,
Reference

new tagged value

Parameter, Property,
Operation

type String,
Reference

Primitive Type or
other classifier

Association sourceEndKind,
targetEndKind

Enumeration composite,
shared or none

sourceLowerBound,
targetLowerBound,

String 1,m,n or *

sourceUpperBound,
targetUpperBound
sourceNavigable,
targetNavigable

Boolean true or false

sourceEndName,
targetEndName

String end role name

source, target Reference qualified classifier
Dependency, Usage supplier, client Reference qualified classifier
Deployment deployedArtifact Reference qualified artifact

location Reference qualified node
CommunicationPath source, target Reference qualified node
Transition source, target Reference qualified state
Constraint language String constraint language

specification String constraint body

Table A.2: Common Grammar Keys and their Values

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 56/136

A.4 Implementation of Evolution stereotypes

Figure A.2: The delta model

Figure A.2 shows the delta model of CARiSMA that provides the support for evolution-
aware checks. Basically, all evolution descriptions given in UMLchange (see Chapter 2)
are translated into elements of the delta model, so-called delta elements. While « add »,
« del », « subst », « edit » and « copy » each have their own delta element types, the other
stereotypes are translated to sets of delta elements equivalent to their original intent.

Using « move » is equivalent to changing the owner of the targeted element. Therefore,
applications of the stereotype are translated to an appropriate EditElement. To man-
age multiple elements the stereotypes « del-all », « add-all » and « subst-all » are used,
which are each translated to an equivalent set of the corresponding single-change ver-
sion. Their targets are identified according to the {pattern} tag entries. Elements marked
with « keep » are processed in two possible ways. If the adopter of the marked element
is described with simple element descriptions, an element description of the marked ele-
ment is generated and integrated into the adequate AddElement. When the adopter is a
modelled element in a change namespace, the kept element is transferred to the adopter
without creating any delta elements.

New model elements modelled in complex change namespaces are translated to EditEle-
ments changing their respective owner. Only the elements directly contained in the com-
plex change namespace or in a model element marked with « old » need to be edited.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 57/136

A.5 Export of Evolution Information for SeTGaM

This section shows an example of how an annotated UMLchange description of an evolu-
tion is exported into XML for further processing in model-based testing, and the SeTGaM
process, respectively. The integration of the tools has been discussed in Section 4.

The example is taken from the evolution of the GP specification V2.1. It is the new
requirement that also non-security domain applications can terminate the card (i.e. to
change card life cycle state from CARD_LOCKED to TERMINATED), if the application
has the card lock privilege. This privilege is checked in the guard of the transition between
the states card locked and terminated. Hence, in V2.2 of the GP life cycle a new transition
with guard checking the privilege is added. This is expressed by the stereotype « add »
attached to the region. The new transition is described using the UMLchange grammar
in the tag { add }. In this case it is:

« add »
{ add=Transition(name=setStatusCardLockedToTerminated_privilegedApp,source=CARD_LOCKED,

target=TERMINATED,content=<Constraint(language=OCL, specification=...)>) }

It will insert a transition named setStatusCardLockedToTerminated_privilegedSD from
the card locked state to the terminated state, without changing the other transitions.
We furthermore add a guard (i.e. a constraint) as subselement of the new transition.
In the constraint which is defined in OCL the card lock privilege is checked. The delta
description of the above mentioned addition of the transition is as follows:

<Delta>

<deltaElements>

<AddElement>

<target class="NamedElement">

<type>Region</type>

<name>CardLifeCycle</name>

<xmiID>Hyv5YGsxEeCtltRm1xIPQ</xmiID>

</target>

<typename>Transition</typename>

<values>

<entry name="name">setStatusCardLockedToTerminated_privilegedSD</entry>

<entry name="source">.::CARD_LOCKED</entry>

<entry name="target">.::TERMINATED</entry>

</values>

<content>

<AddElement>

<typename>Constraint</typename>

<values>

<entry name="language">OCL</entry>

<entry name="specification">...</entry>

</values>

</AddElement>

</content>

</AddElement>

</deltaElements>

</Delta>

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 58/136

A.6 Algorithm Rules of the Activity to Petri Net Converter

Rule 1
1: if currentElement has not been visited then
2: Add new Place to PetriNet
3: for all Element directly following currentElement do
4: ConvertA2P(petri, followElement)
5: end for
6: end if

Rule 2
1: if currentElement has not been visited then
2: Add new Transition to PetriNet
3: for all Element directly following currentElement do
4: ConvertA2P(petri, followElement)
5: end for
6: end if

Rule 3
1: if currentElement has not been visited then
2: Add new Place to PetriNet
3: Add new Arc from source to new Place
4: Add new Arc from new Place to target
5: ConvertA2P(petri, target)
6: end if

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 59/136

Rule 4
1: if currentElement has not been visited then
2: Add new Transition to petriNet
3: Add new Arc from source to new Transition
4: Add new Arc from new Transition to target
5: ConvertA2P(petri, target)
6: end if

Rule 5
1: if currentElement has not been visited then
2: Add new Arc from source to target
3: ConvertA2P(petri, target)
4: end if

Rule 6
1: if currentElement has not been visited then
2: Add new Arc from source to target
3: ConvertA2P(petri, target)
4: end if

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 60/136

A.7 ESSOS 2012:
A Sound Decision Procedure for the Compositionality of
Secrecy

• Martín Ochoa, Jan Jürjens, Daniel Warzecha. A Sound Decision Procedure for
the Compositionality of Secrecy. To appear in 4th International Symposium on
Engineering Secure Software and Systems (ESSOS 2012), Springer, LNCS, 2012

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 61/136

A Sound Decision Procedure for the
Compositionality of Secrecy?

Martín Ochoa1,3, Jan Jürjens1,2, and Daniel Warzecha1

1 Software Engineering, TU Dortmund, Germany
2 Fraunhofer ISST, Germany

3 Siemens AG, Germany
firstname.lastname@cs.tu-dortmund.de

Abstract. The composition of processes is in general not secrecy pre-
serving under the Dolev-Yao attacker model. In this paper, we describe
an algorithmic decision procedure which determines whether the com-
position of secrecy preserving processes is still secrecy preserving. As a
case-study we consider a variant of the TLS protocol where, even though
the client and server considered separately would be viewed as preserv-
ing the secrecy of the data to be communicated, its composition to the
complete protocol does not preserve that secrecy. We also show results
on tool support that allows one to validate the efficiency of our algorithm
for multiple compositions.

1 Introduction

The question of compositional model-checking [5] is crucial for achieving scalable
verification of systems. Moreover, compositionality of secure protocols can cause
unforeseen problems (see for example problems on the SAML based single-sign-
on used by Google in [3]). Although this question has been studied extensively in
the literature, in this paper we propose a novel methodology to specify protocols
such that given a finite set of session variables, compositionality is decidable.
This is equivalent to restrict the analysis of processes to finitely many runs. In-
deed vulnerabilities in authentication protocols have been shown to be limited
to finitely many parallel instantiations [14]. Technically, our analysis generates
finite dependency trees that can be stored for further deciding on future com-
positions. The process of merging such trees can be shown to be empirically
more efficient than re-analysing the composition from scratch, and constitutes
our central contribution. Moreover, this process is relatively sound and complete
with respect to the First Order Logic analysis of [10].

To validate our approach we have implemented our algorithm as an extension
to the UMLsec Tool Suite. This validates the usability of the approach in a
? This research was partially supported by the EU projects Security Engineering for
Lifelong Evolvable Systems (Secure Change, ICT-FET-231101) and NESSoS (FP7
256890). Additionally the paper has been supported by the MoDelSec Project of the
DFG Priority Programme 1496 “Reliably Secure Software Systems – RS3”.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 62/136

2

E ::= expression
d data value (d ∈ D)
N unguessable value (N ∈ Secret)
K key (K ∈ Keys)
inp(c) input on channel c (c ∈ Channels)
x variable (x ∈ Var)
E1 :: E2 concatenation
{E}e encryption (e ∈ Enc)
Dece(E) decryption (e ∈ Enc)
Signe(E) signature creation (e ∈ Enc)
Exte(E) signature extraction (e ∈ Enc)

Fig. 1. Grammar for simple expressions in the Domain-Specific Language

formally sound Software Development process, and has allowed us to measure
the efficiency of our approach given the derivation trees for up to 500 small
components (amounting to about 1000 messages).

This paper is organized as follows: Section 2 presents some preliminaries
about stream processing functions, composition and secrecy. Section 3 describes
the main verification strategy, whereas Section 4 shows its application to an
insecure variant of TLS. Section 5 reports on efficiency of the decision procedure
compared to re-verification. Finally, Related Work is discussed on Section 6 and
we conclude with Section 7.

2 Preliminaries

In [10] the underlying process model used to model component communication
is based on Broy’s stream-processing functions [4]. A process is of the form
P = (I,O, L, (pc)c∈O∪L) where I ⊆ Channels is called the set of its input channels
and O ⊆ Channels the set of its output channels and where for each c ∈ Õ def

=

O ∪ L, pc is a closed program with input channels in Ĩ
def
= I ∪ L (where L ⊆

Channels is called the set of local channels). From inputs on the channels in Ĩ at
a given point in time, pc computes the output on the channel c. Each channel
defines thus a stream processing function based on its input variables allowing
for a rigorous notion of sequential composition, which is denoted by ⊗. For
cryptographic protocol analysis, the programs are specified in a domain specific
language defined by the expressions as in Fig. 1 and a simple programming
language with non-deterministic choice (where loops can be modelled by using
local channels). To proceed with the Dolev-Yao secrecy analysis, one defines rules
to translate programs to first-order logic formulas. With the predicate knows(E)
we can express the fact that an adversary may know an expression E during
the execution of the protocol, therefore it models the man in the middle. For
example, if-constructs are translated by the following formula:

φ(if E = E′ then p else p′) = ∀i1, . . . , in.
ˆ
knows(i1) ∧ . . . ∧ knows(in) ⇒

[E(i1, . . . , in) = E′(i1, . . . , in) ⇒ φ(p)]
∧ [E(i1, . . . , in) 6= E′(i1, . . . , in) ⇒ φ(p′)]

˜
To verify the secrecy of data s ∈ Secret, one then has to check whether the

adversary can derive knows(s), given the formulas that arise from the evaluation
φ of the single program constructs and the following axioms:

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 63/136

3

∀E1, E2.ˆ
knows(E1) ∧ knows(E2) ⇒ knows(E1 :: E2) ∧ knows({E1}E2) ∧ knows(SignE2

(E1))
˜

∧
ˆ
knows(E1 :: E2) ⇒ knows(E1) ∧ knows(E2)

˜
∧

ˆ
knows({E1}E2) ∧ knows(E−1

2) ⇒ knows(E1)
˜

∧
ˆ
knows(Sign

E−1
2

(E1)) ∧ knows(E2) ⇒ knows(E1)
˜

The conjunction of the formulae φ for all channel programs of a process is
called ψ. In the following, we will discuss composition at the level of this First
Order Logic translation and not at the underlying stream processing function
level because the FOL translation contains implicitly all the possible actions an
adversary process could perform (defined by the structural formulas). Moreover,
and adversary that completely controls the communication channels between
processes, might act as an adaptor creating unforeseen compositions between
input and output channels. Therefore we want to approximate the knowledge
an adversary can gain given all possible outputs of the processes (considering all
possible well-formed inputs).

3 Decision procedure

If we assume that both P and P ′ preserve the secrecy of the data value s, our goal
is to show a procedure so that we can decide if ψ(P ⊗P ′) 0 knows(s). In general
this does not hold. For example consider a process P which outputs {s}K and
a process P ′ which outputs K−1. Independently this both processes preserve
the secrecy of s, but when composed an adversary could trivially compute s.
To achieve this, we will construct proof artifacts on each single process called
derivation trees. Moreover, in order ensure that this trees are finite, we will
require that the number of keys and nonces are also finite and that the conditions
in the “if” constructs of the process programs admit only variables that are of
type key or nonce. This will imply the decidability of our approach.

Definition 1 (Subterm). We say that a symbol x is a subterm of the symbol
T and denote it x ∈̂T when one of the following holds:

x=T
T={T’}K and x ∈̂T’
T=SignK{T′} and x ∈̂T’
T= h::k and x ∈̂ h or x ∈̂ k

Example s ∈̂ {s}K but is not true that K ∈̂ {s}K. We denote this by K ˆ6∈ {s}K.
This means that an adversary could potentially compute s from {s}K using the
structural formulas with the necessary previous knowledge, but he could not
compute K.

Definition 2 (Inverse). Let x ∈̂ J. We define the cryptographic inverse of a
symbol J with respect to x and denote it J−1(x) in the following way:

x−1(x) = ε

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 64/136

4

If J=h::k and x ˆ6∈ h then J−1(x)=k−1(x)
If J=h::k and x ˆ6∈ k then J−1(x)=h−1(x)
If J=h::k and x ∈̂ k, x ∈̂ h then J−1(x) = and(h−1(x), k−1(x))

If J={J’}K or J=SignK{J′} then J−1(x) = or(J′−1
(x),K−1).

Example Let J = {{s}K1}K2 . Then J−1(s) = or(K−11 ,K−12) which we will interpret
later as “to preserve the secrecy s we need to preserve either K−11 or K−12 ”.

Let ψ(P) be the first order logic formula associated to P . We define ψ̄(P) to
be the set of instantiated formulas of ψ(P) with all possible values satisfying the
constraints in ψ(P). Since we require that all constraints only contain variables
of type key or nonce, and that the respective sets are finite, then ψ̄(P) is also
finite. It is possible to show by induction on the program constructs that ψ̄(P)
consists of formulas Fi of the form knows(Ei) ⇒ knows(Ji) for closed expressions
Ei and Ji. Let Pres(x,P) be the following inductively defined predicate:

[(∀Fi ∈ ψ̄(P) x ˆ6∈ Ji) ⇒ Pres(x,P))
∧ (∀Fi ∈ ψ̄(P) (x ∈̂ Ji) ⇒ ((Pres(Ei,P) ∨ Pres(Ji−1(x),P))
∧ ((x = {x’}K ∨ x = SignK{x′}) ⇒ (Pres(x’,P) ∨ Pres(K,P))
∧ ((x = h::k ⇒ (Pres(h,P) ∨ Pres(k,P))
∧ ((x = and(h,k) ⇒ (Pres(h,P) ∧ Pres(k,P))
∧ ((x = or(h,k) ⇒ (Pres(h,P) ∨ Pres(k,P))]
⇒ Pres(x,P)

and ¬Pres(ε,P). If we can not derive Pres(x,P) for some x, it follows ¬Pres(x,P).

Theorem 1. If it is possible to derive Pres(x,P) (conversely ¬Pres(x,P)) then
ψ(P) 0 knows(x) (ψ(P) ` knows(x)).

Proof idea In case ¬Pres(ε,P) since knows(ε) ∈ ψ̄(P) for all P . If ∀Fi ∈ ψ̄(P)

x ˆ6∈ Ji that means that there is no formula in ψ̄(P) containing x in a conclusive
position, and therefore there is no way to derive knows(x) from the structural
formulas. Now assume it is possible to derive Pres(x,P). We have already covered
the base cases so we can assume that ψ(P) 0 knows(y) for all the Pres(y,P) y 6=
x needed in the precondition. Since in this formulas all the cases where we could
apply the Structural Formulas are covered, it is impossible to derive knows(x).
The case ¬Pres(x,P) is similar. 2

Notice that the converse does not hold, that is ψ(P) 0 knows(x) does not
mean we can derive Pres(x,P), because for some pathological cases we will have
an infinite loop, for example for ψ̄(P) = knows(x)⇒ knows(x). It is although easy
to detect and avoid this loops in a machine implementation of the preservation
predicate by running an initial check on the formulas. This makes the verification
of the Pres(x,P) predicate sound and complete with respect to the First Order
Logic embedding of the process programs.

As we derive Pres(s,P) for some symbol s and formulas P , we can build
a derivation tree consisting of the symbols we need to consider to be able to
conclude the preservation status of s. If we generate and store the derivation
tree for every symbol x appearing in a process P in a relevant position (that

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 65/136

5

h

s

∨ t

K−1
2 h

K−1
2

t

1

h

s

∨ t

K−1
2 h

K−1
2

t

1

h

s

∨ t

K−1
2 h

K−1
2

t

1

Fig. 2. Processes P and P ′ before and after composition

is x ∈̂ Ji for some i), then we can decide whether the composition with process
P ′ will preserve the secrecy of any given symbol if we also have the derivation
trees for P ′. Consider for example P = ({s}h::t,K−12) and P ′ = ({h}K2 , t). The
symbol dependency trees of both process are depicted in Fig. 2 (the symbols in
red are the ones which secrecy is compromised). Clearly both processes preserve
separately the secrecy of s. To see if the composition also does, we update the
information on the tree of s by checking whether the truth values of h and t are
altered by the composition as depicted in Fig. 2.

4 An insecure variant of the TLS protocol

As an example we apply our approach to a variant of TLS [2] (not the version of
TLS in current use) that does not preserve secrecy as a composition of the client
C, the server S and the authority CA . We have that the predicate for C and S
after the programs are translated to F.O.L are (for details on the translation see
[10]) :

ψ(C) = knows(NC :: KC ::Sign
K−1
C

{C :: KC}) ∧ (knows(s2)∧knows(s3) ⇒ knows({m}y))

ψ(S) = knows(c1) ∧ knows(c2) ∧ knows(c3) ⇒ knows(NS :: { Sign
K−1
S

{kCS :: c1} }c2)

where {s3}KCA
= S :: x ∧ {DecK−1

C
(s2)}x = y :: NC and {c3}c2 = C :: c2

where key(c2), key(x) and key(y). The set of keys is Keys = {KA,K
−1
A , kCS , kA,

KC ,K
−1
C ,KS ,K

−1
S ,KCA,K

−1
CA} where kCS and kA are symmetric keys. The nonces

are Nonces = {NC , NS , NA}. We assume that the authority CA has already dis-
tributed certificates to all parties and that the adversary is in possession of this
information: knows(KCA) ∧ knows(Sign

K−1
CA

{S :: KS}) ∧ knows(Sign
K−1
CA

{A :: KA}).
We further assume that an adversary posses a key pair knows(KA)∧knows(K−1

A).
Now we show that C ⊗ S does not preserve the secrecy of m although C and S
separately do. First of all, in order to be able to apply our approach and gener-
ate the dependency tree, we have to solve the constraints for all the processes
involved. So we have:

ψ̄(C) = knows(NC :: KC ::Sign
K−1
C

{C :: KC})

∧ (knows({ Signx−1{y :: NC} }KC) ∧ knows(Sign
K−1
CA

{S :: x}) ⇒ knows({m}y))

where x ∈ {KC ,KS ,KA} (the public keys) and y ∈ {kA, kCS} (the symmet-
ric keys). We do not explicit the whole dependency tree for C but we note that the
secrecy of m is preserved because: if y = kCS the adversary does not have knowl-
edge of kCS ; if y = kA the adversary would need knowledge of Signx−1{kA :: NC}

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 66/136

6

h

s

∨ t

K−1
2 h

K−1
2

t

1

h

s

∨ t

K−1
2 h

K−1
2

t

1

h

s

∨ t

K−1
2 h

K−1
2

t

1

NC ∨ KA ∨ SignK−1
A
{C :: KA}

kCS

∨ K−1
A ∨ KS

1

SignK−1
S
{kCS :: NC}

NC ∨ KA ∨ SignK−1
A
{C :: KA} K−1

A

{SignK−1
S
{kCS :: NC} }KC

∨ KC

1

{SignK−1
S
{kCS :: NC}}KC

m

∨ kCS

1

Fig. 3. Partial trees for m in C and for kCS and { Sign
K−1
S

{kCS :: NC} }KC in S

and SignK−1
CA
{S :: x} for some x. Since he only knows SignK−1

CA
{S :: KS} then

x = KS . In that case to gain knowledge of SignKS
−1{kA :: NC} he needs to

posses KS
−1 which he does not. In Figure 3 we depict partially this dependency

tree for the case y = kCS , x = KS . Now, the instantiated formulas for S are:

ψ̄(S) = knows(c1) ∧ knows(c2) ∧ knows(Sign
c−1
2

{C :: c2})

⇒ knows(NS :: { Sign
K−1
S

{kCS :: c1} }c2)

with c1 ∈ {NS , NC , NA}, c2 ∈ {KC ,KS ,KA}. The secrecy of m is preserved
in S simply because m is not a subterm of any formula in S.

To see why the composition fails to preserve secrecy, we illustrate (partially)
the dependency trees of kCS and { SignK−1

S
{kCS :: c1} }c2 in case c1 = NC and

c2 = KA in Fig. 3. In fact, since C leaks NC and KC , kCS turns to be not
secret after composition in the tree of S. This also modifies the secrecy status of
{ SignK−1

S
{kCS :: NC} }KC

which results in a secrecy violation for m after updat-
ing the tree of C. We have performed a similar analysis for a fix to this protocol
proposed in [10] where the composition preserves secrecy but for space reasons
we do not explicit the details here.

5 Validation and Efficiency

We have implemented our approach as an extension to the UMLsec tool sup-
port 4. That is, we can extract the protocol specification from a sequence diagram
using the DSL described in Sect. 2 and translate it to First Order Logic. Since
by construction each guard accepts only finitely many messages (depending on
the set of keys and nonces), we can build finite dependency trees for all relevant
symbols by means of a properly generated prolog program.

Reasoning about composition amounts then to join the trees from two pro-
cesses. Therefore, we can at least avoid to recompute the constraint solving for
the single processes. We have conducted experiments to measure the time of
the composition, and compare it to the overall process of constraint-solving and
prolog generation as depicted in Table 1. The first column contains the number
of messages for a single session of the composition and the second column cor-
responds to the number of composed processes. The third column is the time

4 http://www-jj.cs.tu-dortmund.de/jj/umlsec/

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 67/136

7

Generation Composition
Messages Compositions trees (ms) (ms)

11 5 3660 47
21 10 6214 88
31 15 9323 114
51 25 15406 198
101 50 31730 401
501 250 182771 1948
1001 500 375474 3963

Table 1. Execution times of our experiment

in ms. needed to extract the FOL formulas from the UML diagram and gen-
erate the derivation trees. The last column is the time needed for deciding the
composition given the single derivation trees. In other words, if we would have
a repository of 500 processes that by themselves are secrecy preserving, and we
would like to check whether the composition of any 5 of them is also secrecy
preserving, it would be highly desirable if we could use the existing results as
opposed to re-verify from scratch every time.

6 Related Work
Overviews of applications of formal methods to security protocols can be found
for example in [1, 12], some examples in [11, 13]. The question of protocol compo-
sition has been studied by different authors. More prominently, Datta, Mitchell
et al. [6] have defined the PCL (Protocol Composition Logic), aimed at the verifi-
cation of security protocol by re-using proofs of sub-protocols using a Hoare-like
logic, focusing on authenticity. Guttmann [7] gives results about protocol com-
position at a lower abstraction level, considering unstructured ‘blank slots’ and
compound keys that result from hashes of other messages. Jürjens [9] has ex-
plored the question of composability aiming at given sufficient conditions under
which composition holds. Stoller [14] has computed bounds of parallel executions
that could compromise the authenticity of protocols. These approaches aim at
giving at a collection of theorems that if satisfied by two protocols in a composi-
tion, ensure a given property. One must show (by using a theorem prover, or by
hand) that some properties are satisfied by both protocols like disjointness in
[8]. Our approach differs from this assume/guarantee reasoning in that we effi-
ciently check whether the composition harms secrecy given pre-computed ‘proof
artifacts’: the dependency trees. In other words, we give accurate results about
compositions (that are equivalent to re-verification), by amortizing the cost of
verification at an initial phase.

7 Conclusions

The problem of compositionality is of particular importance for software devel-
opment when the security of reusable components has been established, since
guarantees about the composition are needed. The decision procedure should
also scale efficiently to be of practical use, and most of all, sound. We have
shown that our procedure is sound and complete with respect to previous work
on First Order Logic protocol verification. This comes at the price of an initial

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 68/136

8

verification of the single components that considers all the possible acceptable
messages. Nevertheless, this is compensated when it comes to decide compo-
sitionality with an arbitrary process for which the same process has also taken
place, since this can be done very efficiently, as we have empirically tested. There
are different ways in which this work could be further extended. On the one hand,
one can further explore the efficiency of the approach, for example by formally
deriving its complexity . On the other hand, one could extend the approach to
cope with the preservation of other security properties like authenticity.

References

1. M. Abadi. Security protocols and their properties. In F. Bauer and R. Stein-
brüggen, editors, Foundations of Secure Computation, pages 39–60. IOS Press,
Amsterdam, 2000. 20th International Summer School, Marktoberdorf, Germany.

2. G. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How much
does it really cost? In Proceedings of the IEEE Infocom, pages 717–725, 1999.

3. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In V. Shmatikov, editor, FMSE, pages 1–10. ACM, 2008.

4. M. Broy. A logical basis for component-based systems engineering. In Calculational
System Design. IOS. Press, 1999.

5. E. M. Clarke, D. E. Long, and K. L. Mcmillan. Compositional model checking.
Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS
’89) IEEE Computer Society, 1989.

6. A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (pcl).
Electronic Notes in Theoretical Computer Science, 172(0):311 – 358, 2007. Com-
putation, Meaning, and Logic: Articles dedicated to Gordon Plotkin.

7. J. D. Guttman. Cryptographic protocol composition via the authentication tests.
In Proceedings of the 12th International Conference on Foundations of Software
Science and Computational Structures (FOSSACS ’09), pages 303–317, Berlin,
Heidelberg, 2009. Springer-Verlag.

8. J. D. Guttman, F. Javier, and F. J. T. Fábrega. Protocol independence through
disjoint encryption. In In Proceedings, 13th Computer Security Foundations Work-
shop. IEEE Computer, pages 24–34. Society Press, 2000.

9. J. Jürjens. Composability of secrecy. In Proceedings of the International Workshop
on Information Assurance in Computer Networks: Methods, Models, and Archi-
tectures for Network Security, MMM-ACNS ’01, pages 28–38, London, UK, 2001.
Springer-Verlag.

10. J. Jürjens. A domain-specific language for cryptographic protocols based on
streams. J. Log. Algebr. Program., 78(2):54–73, 2009.

11. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Software Concepts and Tools, 17(3):93–102, 1996.

12. C. Meadows. Open issues in formal methods for cryptographic protocol analysis.
In DARPA Information Survivability Conference and Exposition (DISCEX 2000),
pages 237–250. IEEE Computer Society, 2000.

13. L. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1–2):85–128, 1998.

14. S. D. Stoller. A bound on attacks on authentication protocols. Proc. of the 2nd
IFIP International Conference on Theoretical Computer Science: Foundations of
Information Technology in the Era of Network and Mobile Computing, 2001.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 69/136

A.8 AFADL 2012:
Vérification et Test pour des systèmes évolutifs

• Elizabeta Fourneret, Fabrice Bouquet Martin Ochoa, Jan Jürjens, Sven Wenzel.
Vérification et Test pour des systèmes évolutifs. In Congrès Approches Formelles
dans l’Assistance au Développement de Logiciels, pages 150–164, Grenoble, France,
2012.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 70/136

Vérification et Test pour des systèmes évolutifs

Elizabeta Fourneret, Fabrice Bouquet
INRIA/Université de Franche-Comté, Besancon, France
elizabeta.fourneret,fabrice.bouquet@lifc.univ-fcomte.fr

Mart́ın Ochoa, Sven Wenzel, Jan Jurjens
Technical University Dortmund, Germany

martin.ochoa,sven.wenzel,jan.jurjens@cs.tu-dortmund.de

Résumé

Le test à partir de modèle (MBT) est une approche utilisée pour
générer des tests afin de permettre de valider que le comportement
du système est bien conforme à sa spécification. Nous nous proposons
d’étudier cette démarche lors d’évolution du cahier des charges (des
exigences) et l’impact que cela peut avoir sur le besoin de tests associé
à des propriétés de sécurité. La première étape de cette approche est
de s’assurer de la correction du modèle par rapport à ces propriétés
de sécurité. Pour se faire, nous avons utilisé les techniques de vérifica-
tion de propriétés de sécurité pour les systèmes évolutifs proposées dans
UMLseCh. Une fois le modèle vérifié, nous pouvons nous en servir avec
une approche de type MBT. Sur la base des stéréotypes d’UMLseCh
qui permettent de définir les propriétés, nous établissons les besoins
de tests associés à ces propriétés. Pour ce faire, nous avons défini une
procédure automatique pour produire des tests de sécurité à partir de
modèle UMLseCh par l’intermédiaire des ”schémas de test”. De plus,
nous montrons comment notre méthode SeTGaM permet d’améliorer
les approches de type MBT en permettant de choisir de façon effi-
cace les tests à (re)générer dans le cas d’une évolution du système.
Nous illustrerons notre approche sur un fragment de l’environnement
de carte à puce Global Platform 1, dans le cadre du projet Secure-
Change 2.

1 Introduction

Dans le cas de systèmes critiques, il est important de pouvoir bien
prendre en compte les exigences de sécurité. Pour cela, il faut d’une part
que les propriétés de sécurité soient vérifiées sur les modèles d’analyse et
d’architecture des systèmes. D’autre part, elles doivent être mises en œuvre

1. www.globalplatform.org
2. Ces travaux sont supportés par l’EU project Security Engineering for Lifelong Evol-

vable Systems (Secure Change, ICT-FET-231101)http://www.securechange.eu/.

1

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 71/136

par des tests (spécifiques) pour s’assurer que le comportement du système
développé est correct du point de vue de la sécurité.

Typiquement, les modèles permettant de vérifier les propriétés de sécu-
rité sont des modèles qui explicitent l’architecture du système. Différentes
techniques basées sur le modèle de vérification de propriétés de sécurité sont
proposés. Nous pouvons citer par exemple l’approche proposée dans [5] qui
propose un profil UML pour définir les propriétés sur un modèle UML et
l’outillage nécessaire à la vérification.

Pour la partie tests, nous nous intéressons à l’approche Model-Based
Testing (MBT). Elle utilise les modèles pour exprimer les exigences issues
d’une spécification et ensuite calculer des tests qui seront exécutés sur le
système sous test (SUT - System Under Test), vu comme une boite noire.
Le MBT permet de garantir des critères de couverture à partir du modèle et
des exigences qu’il capture. La qualité du modèle vient de ce travail amont
lors de la phase de validation.

Dans le cycle de vie du système, les exigences évoluent (modification,
création, suppression). Afin de suivre ces évolutions, le système doit être
changé. Pour cela, les modèles sont mis à jour et doivent être re-vérifiés et
des nouveaux tests doivent être calculés. Ce processus de maintenance est
très coûteux en terme de ressources (financières, humaines) et de temps.
Cependant, pour les systèmes critiques il est indispensable. Pour cela, l’un
des challenges dans l’ingénierie des systèmes est de minimiser au plus le coût
de la maintenance en augmentant la qualité du logiciel [4]. Nous proposons
d’utiliser la méthode SeTGaM afin de valider l’évolution du système.
La suite de cet article est organisée de la manière suivante. Dans la Section 2
nous allons définir les différentes approches sur lesquelles ce travail est basé.
Le travail réalisé, les résultats et les bénéfices apportés par la technique
que nous proposons sont détaillés en Section 3. Nous présentons les travaux
connexes en Section 4. Enfin, nous conclurons en donnant les perspectives
de ces travaux dans la Section 5.

2 Les bases d’une nouvelle approche

Aujourd’hui lors d’une évolution, le travail de re-verification et la reprise
des tests pour les adapter sont vues comme deux processus distincts, comme
l’illustre la Figure 1. Notre idée est d’intégrer ces deux approches. De ce
fait, l’ingénieur peut profiter des avantages des deux méthodes. Dans cette
section nous allons d’abord présenter le processus de vérification UMLsec, la
méthode de génération de tests et ensuite la méthode de génération sélective
de tests, SeTGaM.

2

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 72/136

Figure 1 – Deux mondes : la vérification et le test

2.1 Le processus de vérification UMLsec

UMLsec se présente sous la forme d’un profil UML. Les stéréotypes sont
utilisés en combinaison avec des tags afin d’exprimer les propriétés de sé-
curité et les assomptions. Les contraintes sont les critères donnés qui per-
mettent de définir si les propriétés sont respectées par le modèle du système
à l’aide d’une sémantique précise définie sur le fragment d’UML utilisé. Les
informations concernant la sécurité sont ajoutées au modèle à l’aide des sté-
réotypes. Elles contiennent : les assomptions de sécurité portant sur la partie
physique du système, les propriétés liées à la sécurité de la communication
et des données échangées ou encore les politiques de sécurités auxquelles le
système doit obéir. Le profil UMLsec utilise aussi les machines à état, pour
plus d’information, le lecteur peut se reporter à la référence [5]. Sur cette
base, les exigences liées à la sécurités sont définies : sécurité, intégrité, au-
thenticité et flot de sécurité de l’information. L’outil UMLsec est capable
de vérifier les contraintes associées aux stéréotypes UMLsec[12]. Il est aussi
possible de générer des formules logiques de premier ordre, sur la base de
la sémantique interprétative associée à UMLsec et des annotations servant
à décrire les propriétés de sécurité. Un prouver automatique de théorèmes

3

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 73/136

et un model-checker vérifient de façon automatique si les propriétés de sé-
curité sont respectées. Dans un deuxième temps, il est possible d’utiliser
Prolog 3 pour générer automatiquement des scénarios d’attaque qui violent
les propriétés de sécurité et ainsi de déterminer et d’enlever cette faille de
sécurité.

2.2 Le processus de génération de tests

Comme nous l’avons décrit précédemment, le processus de génération de
tests que nous utilisons est basé sur les modèles. Les tests produits de cette
façon couvrent les comportements du modèle et utilisent l’animation de ce
dernier pour prédire les valeurs attendues.

Ayant pour but de créer des tests dédiés pour valider les propriétés de
sécurité sur le système, nous ne pouvons pas utiliser ce modèle. Nous nous
reposons sur l’utilisation de scénarios de test qui décrivent l’intention de
test, illustrant la propriété de sécurité donnée (i.e préservation de secret,
contrôle d’accès, authentification etc.), ou vérifiant la robustesse du système
vis à vis de la sécurité. Les scénarios sont écrits avec un langage spécifique
de scénarios [11].

Plus exactement, ce langage permet de créer des scénarios de test comme
une séquence d’étapes, où chaque étape est composée par un ensemble d’opé-
rations (utilisés par exemple au moins une fois) et atteint une cible donnée
(un état particulier du système, activation d’une opération, etc.).

2.3 Génération sélective de tests à partir de modèles

L’approche que nous proposons dans cette sous-section est dédiée aux
systèmes évolutifs critiques. Nous décrivons maintenant le processus de gé-
nération de tests que nous considérons, dédié aux tests d’évolution. Le pro-
cessus prend en entrée deux modèles formels, le premier représentant le
système avant l’évolution et le second après l’évolution. Il prend en compte
également l’ensemble des tests calculés à partir du modèle d’origine.

Notre approche, nommée SeTGaM, représentée sur la Figure 2.3, com-
mence par une analyse des dépendances du modèle d’origine (modèle n) et
de celui après évolution (modèle n+1). Elle a pour but d’identifier les chan-
gements dans les dépendances de données et de contrôle (1). Ensuite, les
machines à états sont comparées (2) afin d’identifier les changements entre
les modèles et de calculer l’impact de l’évolution sur la suite de tests exis-
tante (3). Ce qui permet par la suite de classifier les cas de test de la suite
de tests d’origine (4), en se basant sur les résultats de l’animation du modèle
(5) qui permet de les définir en tant que :

– outdated tests, ces tests ne sont plus valides par rapport à la nouvelle
version du système (ils seront utilisés dans le test de stagnation).

3. www.swi-prolog.com

4

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 74/136

Figure 2 – Le processus SeTGaM

– unimpacted tests, ces tests ne correspondent pas à des parties/exi-
gences impactées par l’évolution dans le système. Ils sont toujours
valides par rapport à la nouvelle version (ils seront utilisés comme test
de non régression)

– updated tests, ces tests représentent une version mise à jour de la
version précédente d’un test. La mise à jour correspond à la modifica-
tion de l’oracle (ils seront utilisés dans le test d’évolution).

– adapted tests, ces tests couvrent des parties/exigences déjà exis-
tantes, mais suite à l’évolution et du fait qu’ils couvrent des éléments
évolués, le test échoue (en anglais failed). Il est nécessaire de re-calculer
une nouvelle séquence de test pour maintenir la couverture (la version
précédente du test sera utilisée dans le test de stagnation).

– re-executed tests, ces tests couvrent des parties/exigences qui ont
évoluées et doivent être re-calculés. La séquence reste identique mais
les paramètres et les valeurs de retours sont mises à jour (ils sont
utilisés dans le test d’évolution, la version précédente du test sera
utilisée dans le test de stagnation) (6)

– new tests, ces tests doivent être générés afin de couvrir les nouvelles

5

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 75/136

fonctionnalités du système qui n’existaient pas auparavant. (7).

3 La nouvelle technique d’intégration

Dans le cas d’une évolution, nous allons voir comment réduire l’effort
nécessaire pour re-vérifier le modèle et adapter les tests. Pour cela, nous
allons déterminer la différence entre l’ancien et le nouveau modèle et ainsi
connâıtre ce sur quoi porte l’évolution.

3.1 Vérification et test pour le système évolutif

Pendant le processus de vérification, nous pouvons utiliser la différence
entre les modèles pour déterminer l’impact sur les propriétés de sécurité is-
sues de la spécification. Ainsi, on ne travaille que sur cette partie au lieu
d’analyser de nouveau entièrement le modèle. Les auteurs dans [6] illustrent
une telle approche pour l’extension de UML pour la sécurité nommée UML-
seCh. Celle-ci permet de vérifier les propriétés de sécurité après l’évolution
sur la base de conditions suffisantes et elle permet de définir explicitement
une ou plusieurs évolutions.

Il est possible de classifier les tests en analysant les différences entre
les deux versions de modèle et en tenant compte des dépendances entre les
éléments impactés et les autres. Les auteurs dans [2] proposent la technique
nommée SeTGaM, qui permet d’établir sur la base du statut des tests de la
première version leur nouveau statut. Il y a actuellement 8 statuts différents :
re-executed, unimpacted, updated, adapted, outdated, failed, removed et les
nouveaux tests dont le statut est new. Afin d’obtenir cette classification les
auteurs utilisent la différence entre les deux versions en combinaison avec
l’analyse d’impact. A cela, s’ajoute aussi le statut précédent du test. Une
fois cette classification effectuée, les tests sont ajoutés à 4 suites de test
différentes pour permettre à l’équipe de validation d’optimiser son travail.
Les suites sont : Evolution, Regression, Stagnation et Deletion.

Ces suites de tests sont utilisées dans le processus de maintenance afin
de valider que les nouveaux éléments et ceux qui ont été modifiés dans le
système, ont évolué correctement. Pour les parties inchangées, ces suites
permettent de vérifier qu’elles n’ont pas été impactées par l’évolution bien
que le changement a réellement eu lieu. La dernière suite de tests permet
de supprimer les tests de la suite Stagnation par rapport aux tests issus de
la version précédente. Enfin, l’utilisateur peut bénéficier de l’intégration sur
plusieurs aspects :

– L’exécution en temps réel peut être réduite significativement, parce
que le deuxième calcul du delta par SeTGaM sera évité (car il est déjà
effectué par UMLseCh).

– L’évolution (exprimée par le delta calculé) sera formalisée avec la
même sémantique pour la vérification de la propriété de sécurité et

6

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 76/136

pour l’impact sur les tests.
– L’ingénieur travaillera seulement sur un modèle, ce qui réduit signi-

ficativement la probabilité d’introduire des erreurs humaines suite au
travail en parallèle avec les deux modèles différents.

3.2 Le processus de l’approche intégrée

L’approche que nous proposons repose sur la complémentarité des deux
techniques de vérification et de test. Plus particulièrement, le modèle uti-
lisé pour la génération de tests doit être validé au préalable au regard des
propriétés de sécurités considérées. Si ce n’est pas le cas, le modèle peut
autoriser un comportement incorrect et voir même, ce qui est encore plus
grave, les tests produits demanderont que le système sous test se comporte
comme le modèle, c’est à dire d’une manière incorrecte. Cela aura comme
résultat une implémentation fausse du système qui sera considérée comme
correcte au regard des tests exécutés. Pour cela il est indispensable de s’as-
surer que le modèle de test respecte les propriétés de sécurité sur lequel les
tests générés se basent.

Figure 3 – Intégration de la vérification et du test

La collaboration entre la vérification et le test est illustrée sur la Figure 3.
Tout d’abord, l’ingénieur de validation crée le modèle de test et exprime les
propriétés (étape ¬). Il utilise ensuite l’approche UMLsec, étape , afin de

7

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 77/136

valider les propriétés de sécurité et de s’assurer que le modèle respecte les
propriétés considérées. Une fois que le modèle est déclaré correct, il peut être
utilisé pour la génération de tests dédiés aux propriétés de sécurité (étape
®). Lors d’une évolution du système, les changements sont décrits comme un
ensemble de différences entre les deux versions du modèle (étape ¯). C’est
alors que le processus UMLseCh est utilisé pour valider l’évolution i.e qu’il
vérifie les propriétés de sécurité (étape °). Une fois que les propriétés de sé-
curité sont validées par UMLseCh, qu’elles soient préservées par l’évolution,
UMLseCh produit le fichier delta contenant les informations sur l’évolution.
Les différences entre les deux versions, issus du delta, sont utilisées pour
calculer le modèle de test évolué (étape ±). Ensuite, au niveau de l’étape ³

SeTGaM utilise ces trois entités : le modèle initial, le delta et le modèle évo-
lué pour classifier les tests de la version initiale vis-à-vis l’évolution, générer
des nouveaux tests si nécessaire et créer la suite de tests pour le système
évolué.

Nous définissons ci-dessous les évolutions possibles pour un modèle donné :
– l’addition d’une nouvelle entité dans le modèle (class, state, etc.)
– la suppression (en anglais deletion) d’une entité existante
– la substitution d’une entité du modèle par une autre.
Ces additions, suppressions et substitutions sont spécifiées par des stéréo-

types dédiés dans le modèle UML correspondant : add, del and substitute/substitute-
all. L’exemple d’une telle description en XML est présentée sur la Figure 3.2.

Enfin, nous pouvons résumer l’approche de la manière suivante :
– la vérification du modèle basée sur le delta est appliquée sur le mo-

dèle de test et sur les propriétés vérifiées sur le modèle. De plus, les
deux approches, vérification et test, sont utilisées par le même acteur
(l’ingénieur de validation).

– La technique SeTGaM profite du calcul des différences déjà existant.
Ceci est très utile dans deux cas : (i) cela rend possible le calcul auto-
matique de la nouvelle version du modèle, et (ii) cela évite de recalculer
les différences entre les modèles au début de SeTGaM.

3.3 Résultats et bénéfices de l’intégration

Nous avons appliqué notre approche sur un fragment de GlobalPlatform,
plus exactement sur la partie de la gestion du cycle de vie de la carte à puce.
Nous avons travaillé sur deux spécifications différentes 2.1.1 et 2.2 (confi-
guration UICC) présentées par leurs diagrammes d’états/transitions sur la
figure 5. Dans la version 2.1.1 de la spécification, seule une application spé-
cifique appelée ISD peut ”terminer” la carte ou rendre la carte inutilisable.
Cependant dans la nouvelle version 2.2 UICC, la carte peut être ”terminée”
par n’importe quelle application ayant les droits. Pour des raisons de confi-
dentialité, nous ne pouvons pas donner plus de détails sur le modèle et la
spécification réalisée dans le cadre des études de cas du projet SecureChange.

8

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 78/136

<add>

<element type=’transition’ name=’t1’>

<event name=’e’ />

<source name=’S1’ />

<target name=’s2’/>

<guard> ocl code... </guard>

<action> ocl code... </action>

</element>

<element> ... </element>

</add>

<element type=’transition’ name=’t2’/>

<element> ... </element>

<sub-all>

<sub type=’transition’ name=’t1’>

<target> Ty </target>

<guard> G2 </guard>

</sub>

...

</sub-all>

Figure 4 – Exemple du fichier XML donnant les évolutions.

Pour cela, nous présentons ici une propriété de sécurité sur les droits d’ac-
cès, issue de la spécification, mais pouvant être appliquée aux cartes à puce
en général. La propriété spécifie qu’une fois que la carte a été mise dans
l’état ”terminated” (par une application ayant les bons privilèges), il ne doit
pas être possible de revenir à un autre état. L’intention de test associée à
cette propriété pourrait être décrite de la façon suivante. Tout d’abord, une
application ayant les privilèges nécessaires sera sélectionnée (i.e. celle-ci est
nécessaire pour changer le statut de la carte). Puis, on utilise l’opération
dédiée pour changer le statut de la carte à ”terminated”. Finalement, l’acti-
vation de toutes les opérations possibles sera utilisée afin de s’assurer qu’il
soit impossible de changer le statut de la carte. Ce scénario, décrit sur la
Figure 3.3, nous a permis de générer treize différentes séquences de tests
pour la version 2.1.1.

En appliquant la méthode sur la nouvelle version, nous obtenons que
la propriété précédemment décrite est correcte avec l’ajout d’une transition
dans le modèle de test (exprimée par le delta). Ensuite, nous avons appliqué
la méthode SeTGaM. Le calcul de dépendances sur le modèle a classé tous
les tests de la première version comme impactés et ils ont été ensuite classés
en ”Re-executed”. De plus, la méthode nous a permis de générer un nouveau

9

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 79/136

Figure 5 – Global Platform Card Life Cycle

for each $X from any operation
use any operation any number of times to reach
state representing selectedApp.privileges.cardTerminatePriv=TRUE
on instance sut

then use setStatus at least once
to reach state representing cardState = TERMINATED
on instance sut

then use any behavior to cover at least once to activate $X
then use getStatus at least once to activate

behavior activating {@AIM : SUCCESS}

Figure 6 – Schéma de test

test, pour compléter la couverture de la nouvelle exigence correspondant à
l’ajout de la transition.

Pour conclure, l’ingénieur de test peut modéliser les évolutions prévues
dans le modèle de test et vérifier les changements sans forcément re-exécuter
tout le processus de vérification depuis le début. En utilisant cette approche,
il peut bénéficier des techniques de delta et de vérification. Plus particuliè-
rement, il pourra exploiter les notations UMLseCh afin de calculer le delta

10

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 80/136

entre le modèle et ses évolutions. Il sera ensuite possible d’utiliser ce résultat
comme entrée de la technologie de génération de tests.
D’une part, la génération de tests qui porte sur l’évolution prend en compte
deux modèles et calcule leurs différences. D’autre part UMLseCh peut leur
fournir un ensemble d’évolutions possibles pour un modèle donné. Il est à
noter que ces deux approches considèrent des modèles qui sont créés par des
outils de modélisation UML différents (e.g. UMLseCh pour la vérification
est basé sur ArgoUML, cependant le logiciel de génération de tests utilise
IBM Rational Software Architect). L’information pour le delta est exploi-
table par les différents outils puisque l’information est transmise à travers
la description des changement en XML. Cette solution est la moins invasive
en terme d’adaptation des outils déjà existants. Le fait d’avoir déjà le delta
calculé pour le processus de génération permet de :

– créer un nouveau modèle issu de l’évolution décrite,
– éviter le calcul de la différence entre modèles, cette information sera

directement utilisée depuis le delta,
– appliquer les autres traitements de l’approche en minimisant l’interfé-

rence.

4 Les travaux connexes

Lors de l’évolution d’un système, il est nécessaire de faire face à plusieurs
challenges :

– définir l’évolution,
– s’assurer que le modèle est correct par rapport à la propriété de sécu-

rité,
– s’assurer de la maintenance des artefacts.
Tout d’abord lorsque la spécification évolue, il faut que le modèle évolue

en même temps que le système. Pour cela, premièrement il faut déterminer
les éléments qui ont évolué. Deuxièmement, il faut s’assurer que le nou-
veau modèle est correct par rapport aux propriétés de sécurité issues de la
spécification. Enfin, ce changement impactera la base de test. La personne
en charge de cela devra s’assurer que les élément non-impactés n’ont pas
changé, et vérifier que les fonctionnalités supprimées sont bien enlevées du
système.

Dans le test de sécurité à partir des modèles (Model-Based Security
Testing MBST), nous retrouvons souvent des approches définis autour des
polices de contrôle d’accès. Par exemple, les auteurs en[9] vérifient la ”sound-
ness” de la police de sécurité et ensuite son adéquation avec les exigences
afin de détecter des conflits entre des règles. Enfin, ils utilisent le test par
mutation afin de s’assurer que le code est conforme au modèle de sécurité.

Les auteurs dans [3] décrivent une technique basée sur les modèles dédiés
pour la validation des propriétés de sécurité des cartes à puce. Premièrement,

11

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 81/136

les propriétés de sécurité sont vérifiées sur le modèle utilisant UMLSec et en-
suite le modèle est utilisé pour la génération des tests dédiés à la validation
de la propriété sur la carte à puce. Ils donnent aussi des règles de transfor-
mation des stéréotypes UMLsec en schémas, utilisés pour la génération de
tests de sécurité.

Le test des systèmes critiques en évolution, dont le test de non régres-
sion, malgré l’effort pour diminuer les coûts, reste toujours l’une des activités
les plus chères dans la maintenance logiciels. D’une part il faut des res-
sources et du temps pour sélectionner les tests, d’autre part le coût dépend
de l’approche automatisée ou non. Afin de réduire le coût et d’augmenter
la performance, il existe plusieurs stratégies et techniques sur lesquelles les
chercheurs travaillent. Cependant, elles sont orientés sur l’aspect fonctionnel.
Harrold et Al. [10] expliquent clairement les stratégies de test de non-régression :

– Tout sélectionner (en Anglais Retest-All) : qui demande l’applica-
tion de toute la suite de tests avant l’évolution. Dans certaines classi-
fications nous retrouvons cette stratégie en tant qu’une technique de
sélection.

– Sélective : qui demande de sélectionner un sous-ensemble de tests de
la suite de tests avant l’évolution selon différentes techniques.

Nous retrouvons la classification suivante des techniques de sélection des
tests : techniques de minimisation, techniques basées sur la couverture, tech-
niques sûres, techniques aléatoires

Les solutions MBT pour le test de non-régression dépendent du type de
modèle et de la ou des techniques choisies. Dans Korel et Al. [8] nous re-
trouvons une étude sur les systèmes SDL 4 et la notion d’exigence pour la
génération des tests de non régression. Le but est de couvrir tout le système
avec ces tests. Dans le but d’exprimer les exigences, ils utilisent des SDL re-
présentant des fragments du système. Ensuite, ils les rassemblent en un seul
système SDL. A partir de là, ils peuvent le transformer en EFSM 5 modèle,
qui va être l’entrée pour la génération des tests. Le langage descriptif des
EFSM est donc utilisé pour repérer plus facilement l’évolution du système
et rattacher les exigences qu’ils utilisent. De cette manière, ils ont défini des
règles pour l’addition, la suppression et la modification d’une exigence.

Dans Korel et Al. [7], nous retrouvons une méthode qui est un complément
de la précédente mais plus précise car elle utilise l’analyse des dépendances
sur les données et le contrôle. La sélection de tests de la suite d’origine est ef-
fectuée selon des Patterns. Les Patterns sont créés selon les différents effets :
l’effet du modèle sur la modification, la modification sur le modèle et autres

4. Specification Description Language
5. Extended Finite State Machines

12

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 82/136

effets secondaires causés par la modification. Un test est inclus dans la RTS
(suite de test de non régression) si au moins un des patterns d’interaction
n’existe pas dans la sélection des tests.

D’autre part Chen et Al. [13], décrivent une analyse des dépendances beau-
coup plus approfondie définissant les règles et les dépendances pour chaque
modification élémentaire. Au total, nous retrouvons douze dépendances dif-
férentes. Ici, le mot dépendance est très proche de la signification du Pattern
définie par Korel et al. La suite de test réduite contient les tests vérifiant
les effets directs et indirects du modèle modifié, ayant pour but de couvrir
toute les nouvelles dépendances par modification.

Les travaux de Briand et Al.[1] se sont intéressés à UML et plus parti-
culièrement à l’étude des tests de non régression à partir de modèle utilisant
les diagrammes de classe, les cas d’utilisation et les diagrammes de séquence.
La méthode propose dans un premier temps de définir les différences entre
les deux modèles. Ensuite, les tests sont classifiés en trois catégories : tests
obsolètes, tests re-testables et tests réutilisables. Finalement, ils ont créé un
outil pour des programmes en langage C qui automatisent cette méthode,
nommé RTSTool. C’est ici qu’apparait la prise en compte du cycle de vie
des tests. Ceci va nous servir pour le développement de notre méthode.

Nous avons vu plusieurs types de test de non-régression, cependant à notre
connaissance, très peu de travaux traitent en même temps la question de la
vérification basée sur le modèle, le test de sécurité et l’évolution. C’est pour
cela que nous avons choisi de proposer une approche qui permet de prendre
en compte en même temps ces trois aspects.

5 Conclusion et Travaux futurs

Avec ce travail nous allons au delà du test de sécurité basé sur le modèle,
vu que nous travaillons sur l’aspect évolution. Quand une évolution a lieu
dans la spécification, nous sommes en mesure de définir le delta en utilisant
les tags crées en XML. Ensuite il nous est possible de vérifier si l’évolution
est correcte en utilisant la méthodologie de UMLseCh. Finalement, si le
processus de vérification n’échoue pas, le delta et les propriétés de sécurité
pourront être utilisés pour la génération sélective des tests par SeTGaM.

Nous avons présenté sur une application notre approche et son implé-
mentation. L’étape suivante est de mieux valider ces travaux. Pour cela,
nous allons nous intéresser aux éléments suivants :

– Dans quelle mesure cette approche permet d’augmenter vraiment la
confiance dans le modèle pour le test dans le cas d’évolution su sys-
tème ?

13

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 83/136

– Est-ce que cette démarche peut être mise en œuvre dans un contexte
industriel et quels sont les verrous qui peuvent en empêcher l’adop-
tion ?

De plus, nous allons travailler sur le nombre de propriétés de sécurité
et les différentes catégories qui peuvent être prises en compte dans notre
approche. Pour cela, nous allons continuer à appliquer cette approche sur
les études de cas du projet SecureChange. De plus, UMLsec/Ch propose
de créer des scénarios d’attaque en utilisant les propriétés de sécurité. Il
serait très intéressant de coupler cela dans le processus de gestion de tests
afin d’obtenir d’autres types de tests dédiés à la sécurité. Nous souhaitons
continuer le travail sur la transformation des stéréotypes UMLsec en schémas
de tests [3] et ainsi disposer d’un processus complètement intégré permettant
la génération des tests pour des systèmes évolutives en utilisant SeTGaM.

Références

[1] L.C Briand, Y. Labiche, and S. He. Automating regression test selection
based on uml designs. In ELSEVIER B.V 2008, 2008.

[2] Elizabeta Fourneret, Fabrice Bouquet, Frédéric Dadeau, and Stéphane
Debricon. Selective test generation method for evolving critical systems.
In REGRESSION’11, 1st Int. Workshop on Regression Testing - co-
located with ICST’2011, Berlin, Germany, March 2011. IEEE Computer
Society Press. To appear.

[3] Elizabeta Fourneret, Martn Ochoa, Fabrice Bouquet, and Jan Jür-
jens. Model-based security verification and testing for smart-cards. In
ARES’11, 2011. To appear.

[4] Wolfgang Grieskamp. Multi-paradigmatic model-based testing. In
Klaus Havelund, Manuel Núñez, Grigore Rosu, and Burkhart Wolff,
editors, FATES/RV, Lecture Notes in Computer Science, pages 1–19.
Springer.

[5] Jan Jürjens. Secure Systems Development with UML. Springer-Verlag,
2005.

[6] Jan Jürjens, Löıc Marchal, Mart́ın Ochoa, and Holger Schmidt. Incre-
mental Security Verification for Evolving UMLsec models. In ECMFA,
Lecture Notes in Computer Science. Springer, 2011.

[7] Bogdan Korel, Luay H.Tahat, and Boris Vaysburg. Model based re-
gression test reduction using dependence analysis. In IEEE ICSM ’06,
2006.

[8] Bogdan Korel, Luay H.Tahat, Boris Vaysburg, and Atef J. Bader. Re-
quirement based automated black-box test generation. In IEEE ICSM
’01, 2001.

14

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 84/136

[9] Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry, and Yves Le Traon.
A model-based framework for security policy specification, deployment
and testing. In MoDELS, pages 537–552, 2008.

[10] Gregg Rothermel, Mary Jean Harrold, Todd L. Graves, Jung-Min Kim,
and Adam Porter and. An empirical study of regression test selection
techniques. ACM Transactions on Software Engineering and Methodo-
ligy, 10 : 184–208, avril 2001.

[11] SecureChange. Deliverable 7.3. Available at http://www.

securechange.eu/content/deliverables, 2011.

[12] UMLsec tool. http://umlsec.de, May 2011.

[13] Hasan Ural, Robert L. Probert, and Yanping Chen. Model based regres-
sion test suite generation using dependence analysis. In Proceedings of
the third internationnal workshop on Advances in model-based testing,
pages 54–62, 2007.

15

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 85/136

A.9 SFM 2011:
Modelling Secure Systems Evolution

• J. Jürjens, M. Ochoa, H. Schmidt, L. Marchal, S.H. Houmb, S. Islam. Modelling
Secure Systems Evolution: Abstract and Concrete Change Specifications (invited
lecture). 11th School on Formal Methods (SFM 2011), Bertinoro (Italy) 13-18 June
2011.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 86/136

Modelling Secure Systems Evolution:
Abstract and Concrete Change Specifications

Jan Jürjens1,2 , Mart́ın Ochoa1, Holger Schmidt1, Löıc Marchal3, Siv Hilde
Houmb4 and Shareeful Islam5

1 Software Engineering, Dep. of Computer Science, TU Dortmund, Germany
2 Fraunhofer ISST, Germany

3 Hermès Engineering, Belgium
4 Secure-NOK AS, Norway

5 School of Computing, IT and Engineering, University of East London, UK
{jan.jurjens,martin.ochoa,holger.schmidt}@cs.tu-dortmund.de

loic.marchal@hermes-ecs.com

sivhoumb@securenok.com

shareeful@uel.ac.uk

Abstract. Developing security-critical systems is difficult, and there are
many well-known examples of vulnerabilities exploited in practice. In
fact, there has recently been a lot of work on methods, techniques, and
tools to improve this situation already at the system specification and
design. However, security-critical systems are increasingly long-living and
undergo evolution throughout their lifetime. Therefore, a secure software
development approach that supports maintaining the needed levels of
security even through later software evolution is highly desirable. In this
chapter, we recall the UMLsec approach to model-based security and
discuss on tools and techniques to model and verify evolution of UMLsec
models.

Keywords: Software Evolution, UMLsec, UMLseCh, Security

1 Introduction

Typically, a systematic approach focused on software quality – the degree to
which a software system meets its requirements – is addressed during design
time through design processes and supporting tools. Once the system is put in
operation, maintenance and re-engineering operations are supposed to keep it
running.

At the same time, successful software-based systems are becoming increas-
ingly long-living [21]. This was demonstrated strikingly with the occurrence of
the year 2000 bug, which occurred because software had been in use for far longer
than its expected lifespan. Also, software-based systems are getting increasingly
security-critical since software now pervades the whole critical infrastructures
dealing with critical data of both nations and also private individuals. There
is therefore a growing demand for more assurance and verifiable secure IT sys-
tems both during development and at deployment time, in particular also for

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 87/136

2

2

Model

Software System

Model

n
Security verified

{Still secure?

{

1

Evolved System

Evolved System

Model

∆1

...
...

∆n

Fig. 1. Model verification problem for n possible evolution paths

Theoretically, one could simply re-run the security analysis done to establish
the security of the original model on the evolved model to decide whether these
properties are preserved after evolution. This would, however, result in general in a
high resource consumption for models of realistic size, in particular since the goal in
general is to investigate the complete potential evolution space (rather than just one
particular evolution) in order to determine which of the possible evolutions preserve
security. Also, verification efficiency is very critical if a continuous verification is
desired (i.e. it should be determined in real-time and in parallel to the modelling
activity whether the modelled change preserves security). As one result of our
work, we demonstrate that the security checks defined for UMLsec allow significant
efficiency gains by considering an incremental verification technique based on the
evolution differences.

We use models specified using the Unified Modeling Language (UML) [20] and
the security extension UMLsec [7]. We present a general approach for the incremen-
tal security verification of UML models against security requirements inserted as
UMLsec stereotypes. We discuss the possible atomic (i.e. single model element)
evolutions annotated with certain security requirements according to UMLsec.
Moreover, we present sufficient conditions for a set of model evolutions, which,
if satisfied, ensure that the desired security properties of the original model are
preserved under evolution. We show that these conditions are sound with respect
to the security requirements. We demonstrate our general approach by applying it
to a representative UMLsec stereotype, �� secure dependency ��.

To explicitly specify possible evolution paths, we have developed a further exten-
sion of the UMLsec profile (called UMLseCh), using stereotypes �� add ��, �� del ��, and
�� substitute �� that precisely define which model elements are to be added, deleted,
and substituted in a model. Constraints in first-order predicate logic allow to co-
ordinate and define more than one evolution path (and thus obtaining the deltas
for the analysis). The UMLseCh notation is complete in the sense that any kind of
evolution between two UMLsec models can be captured by adding a suitable num-
ber of UMLseCh annotations to the initial UMLsec model. Note that UMLseCh is
not intended as a general-purpose evolution modeling language: it is specifically in-
tended to model the evolution in a security-oriented context in order to investigate
the research questions wrt. security preservation by evolution (in particular, it is
an extension of UMLsec and requires the UMLsec profile as prerequisite profile).
Thus, UMLseCh does not aim to be an alternative for any existing general-purpose
evolution specification or model transformation approaches (such as [5, 1, 2, 14, 8]).
It will be interesting future work to demonstrate how the results presented in this
paper can be used in the context of those approaches.

Fig. 1. Model verification problem for n possible evolution paths

long living systems. Yet a long lived system also needs to be flexible, to adapt
to evolving requirements, usage, and attack models. However, using today’s sys-
tem engineering techniques we are forced to trade flexibility for assurance or vice
versa: we know today how to provide security or flexibility taken in isolation. We
can use full fledged verification for providing a high-level of assurance to fairly
static requirements, or we can provide flexible software, developed in weeks using
agile methodologies, but without any assurance. This raises the research chal-
lenge of whether and how we can provide some level of security assurance for
something that is going to change.

Our objective is thus to develop techniques and tools that ensure “lifelong”
compliance to evolving security requirements for a long-running evolving soft-
ware system. This is challenging because these requirements are not necessarily
preserved by system evolution [22]. In this chapter, we present results towards
a security modelling notation for the evolution of security-critical designs, suit-
able by verification with formally founded automated security analysis tools.
Most existing assessment methods used in the development of secure systems
are mainly targeted at analysing a static picture of the system or infrastructure
in question. For example, the system as it is at the moment, or the system as it
will be when we have updated certain parts according to some specifications. In
the development of secure systems for longevity, we also need descriptions and
specifications of what may be foreseen as future changes, and the assessment
methods must be specialized account for this kind of descriptions. Consequently,
our approach allows to re-assess the impact that changes might have on the
security of systems.

On one hand, a system needs to cope with a given change as early as possible
and on the other hand, it should preserve the security properties of the overall
system (Fig. 1). To achieve this, it is preferable to analyse the planned evolu-
tion before carrying it out. In this chapter we present a notation that allows
to precisely determine the changes between one or more system versions, and
that combined with proper analysis techniques, allows to reason about how to
preserve the existing and new (if any) security properties due to the evolution.
Reflecting change on the model level eases system evolution by ensuring effec-

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 88/136

3

tive control and tracking of changes. We focus in understanding and tracing the
change notations for the system design model. Design models represent the early
exploration of the solution space and are the intermediate between requirements
and implementation. They can be used to specify, analyse, and trace changes
directly.

In Sect. 2 we recall the UMLsec profile [10, 13], which is a UML [28] light-
weight extension to develop and analyse security models, together with some
applications. We present a change-modelling profile called UMLseCh in Sect. 3.
We use UMLseCh design models for change exploration and decision support
when considering how to integrate new or additional security functions and to
explore the security implications of planned system evolution. To maintain the
security properties of a system through change, the change can be explicitly
expressed such that its implications can be analysed a priori. The UMLseCh
stereotypes extend the existing UMLsec stereotypes so that the design models
preserve the security properties due to change.

Although, the question of model evolution is intrinsically related with model-
transformation, we do not aim to show an alternative for any existing general-
purpose evolution specification or model transformation approaches (such as [7,
1, 2, 25, 20]). However, we rely on UMLsec because it comes with sophisticated
tool support6, and our goal is to present an approach that is a) consistent with
the UMLsec philosophy of extending UML b) is meant to be used on the UML
fragment relevant for UMLsec.

In Sect. 4 we show some applications of UMLseCh to different diagram types
and we discuss how this notation and related verification mechanisms could be
supported by an extension of the UMLsec Tool Suite.

2 Background: Secure Systems Modelling with UMLsec

Generally, when using model-based development (Fig. 2a), the idea is that one
first constructs a model of the system. Then, the implementation is derived from
the model: either automatically using code generation, or manually, in which case
one can generate test sequences from the model to establish conformance of the
code regarding the model. In the model-based security engineering (MBSE) ap-
proach based on the UML [28] extension UMLsec, [11, 13], recurring security
requirements (such as secrecy, integrity, authenticity, and others) and security
assumptions on the system environment, can be specified either within UML
specifications, or within the source code (Java or C) as annotations (Fig. 2b).
This way we encapsulate knowledge on prudent security engineering as anno-
tations in models or code and make it available to developers who may not be
security experts.

The UMLsec extension is given in form of a UML profile using the standard
UML extension mechanisms. Stereotypes are used together with tags to formu-
late the security requirements and assumptions. Constraints give criteria that

6 UMLsec tool suite: http://www.umlsec.de/

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 89/136

4

Automated
Theorem

Prover

UML editor

Java editor

Analyzer

Local
Code

Checker
Control
Flow
Graph

code Report
TextJava

Trace
Attack

data flow

"uses"

fmla
FOL

generator
Attack

prog.

model

Prolog

UMLsec
Code
with

Assert’s;
Tests

Assertion/Test
Generator

Security
Analyzer

Fig. 2. a) Model-based Security Engineering; b) Model-based Security Tool Suite

determine whether the requirements are met by the system design, by referring
to a precise semantics of the used fragment of UML. The security-relevant infor-
mation added using stereotypes includes security assumptions on the physical
level of the system, security requirements related to the secure handling and
communication of data, and security policies that system parts are supposed to
obey. The UMLsec tool-support in Fig. 2b) can be used to check the constraints
associated with UMLsec stereotypes mechanically, based on XMI output of the
diagrams from the UML drawing tool in use [29, 14, 18, 8]. There is also a frame-
work for implementing verification routines for the constraints associated with
the UMLsec stereotypes. Thus advanced users of the UMLsec approach can use
this framework to implement verification routines for the constraints of self-
defined stereotypes. The semantics for the fragment of UML used for UMLsec is
defined in [13] using so-called UML Machines, which is a kind of state machine
with input/output interfaces similar to Broy’s Focus model, whose behavior can
be specified in a notation similar to that of Abstract State Machines (ASMs),
and which is equipped with UML-type communication mechanisms. On this
basis, important security requirements such as secrecy, integrity, authenticity,
and secure information flow are defined. To support stepwise development, we
show secrecy, integrity, authenticity, and secure information flow to be preserved
under refinement and the composition of system components. We have also de-
veloped an approach that supports the secure development of layered security
services (such as layered security protocols). UMLsec can be used to specify and
implement security patterns, and is supported by dedicated secure systems devel-
opment processes, in particular an Aspect-Oriented Modeling approach which
separates complex security mechanisms (which implement the security aspect
model) from the core functionality of the system (the primary model) in order
to allow a security verification of the particularly security-critical parts, and also
of the composed model.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 90/136

5

2.1 The UMLsec Profile

Because of space restrictions, we cannot recall our formal semantics here com-
pletely. Instead, we define precisely and explain the interfaces of this semantics
that we need here to define the UMLsec profile. More details on the formal
semantics of a simplified fragment of UML and on previous and related work
in this area can be found in [9, 13]. The semantics is defined formally using so-
called UML Machines, which is an extension of Mealy automata with UML-type
communication mechanisms. It includes the following kinds of diagrams:

Class diagrams define the static class structure of the system: classes with
attributes, operations, and signals and relationships between classes. On the
instance level, the corresponding diagrams are called object diagrams.

Statechart diagrams (or state diagrams) give the dynamic behavior of an
individual object or component: events may cause a change in state or an
execution of actions.

Sequence diagrams describe interaction between objects or system
components via message exchange.

Activity diagrams specify the control flow between several components within
the system, usually at a higher degree of abstraction than statecharts and
sequence diagrams. They can be used to put objects or components in the
context of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the physical layer on which the system is to
be implemented.

Subsystems (a certain kind of packages) integrate the information between
the different kinds of diagrams and between different parts of the system
specification.

There is another kind of diagrams, the use case diagrams, which describe
typical interactions between a user and a computer system. They are often used
in an informal way for negotiation with a customer before a system is designed.
We will not use it in the following. Additionally to sequence diagrams, there
are collaboration diagrams, which present similar information. Also, there are
component diagrams, presenting part of the information contained in deployment
diagrams.

The used fragment of UML is simplified to keep automated formal verification
that is necessary for some of the more subtle security requirements feasible. Note
that in our approach we identify system objects with UML objects, which is
suitable for our purposes. Also, as with practically all analysis methods, also in
the real-time setting [30], we are mainly concerned with instance-based models.
Although, simplified, our choice of a subset of UML is reasonable for our needs,
as we have demonstrated in several industrial case-studies (some of which are
documented in [13]).

The formal semantics for subsystems incorporates the formal semantics of
the diagrams contained in a subsystem. It

– models actions and internal activities explicitly (rather than treating them
as atomic given events), in particular the operations and the parameters
employed in them,

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 91/136

6

«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 3. Example secure links usage

– provides passing of messages with their parameters between objects or com-
ponents specified in different diagrams, including a dispatching mechanism
for events and the handling of actions, and thus

– allows in principle whole specification documents to be based on a formal
foundation.

In particular, we can compose subsystems by including them into other subsys-
tems.

For example, consider the following UMLsec Stereotype:

secure links This stereotype, which may label (instances of) subsystems, is used
to ensure that security requirements on the communication are met by the phys-
ical layer. More precisely, the constraint enforces that for each dependency d
with stereotype s ∈ {�secrecy�,�integrity�,�high�} between subsys-
tems or objects on different nodes n,m, we have a communication link l between
n and m with stereotype t such that

– in the case of s =�high�, we have ThreatsA(t) = ∅,
– in the case of s =�secrecy�, we have read /∈ ThreatsA(t), and
– in the case of s =�integrity�, we have insert /∈ ThreatsA(t).

Example In Fig. 3, given the default adversary type, the constraint for the
stereotype�secure links� is violated: The model does not provide communi-
cation secrecy against the default adversary, because the Internet communication
link between web-server and client does not give the needed security level ac-
cording to the Threatsdefault(Internet) scenario. Intuitively, the reason is that
Internet connections do not provide secrecy against default adversaries. Techni-
cally, the constraint is violated, because the dependency carries the stereotype
�secrecy�, but for the stereotype �Internet� of corresponding link we
have read ∈ Threatsdefault(Internet).

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 92/136

7

Code Security Assurance [15, 16] Even if specifications exist for the im-
plemented system, and even if these are formally analyzed, there is usually no
guarantee that the implementation actually conforms to the specification. To
deal with this problem, we use the following approach: After specifying the
system in UMLsec and verifying the model against the given security goals as
explained above, we make sure that the implementation correctly implements
the specification with techniques explained below. In particular, this approach is
applicable to legacy systems. In ongoing work, we are automating this approach
to free one of the need to manually construct the UMLsec model.

Run-time Security Monitoring using Assertions A simple and effective alterna-
tive is to insert security checks generated from the UMLsec specification that
remain in the code while in use, for example using the assertion statement that
is part of the Java language. These assertions then throw security exceptions
when violated at run-time. In a similar way, this can also be done for C code.

Model-based Test Generation For performance-intensive applications, it may be
preferable not to leave the assertions active in the code. This can be done by
making sure by extensive testing that the assertions are always satisfied. We
can generate the test sequences automatically from the UMLsec specifications.
More generally, this way we can ensure that the code actually conforms to the
UMLsec specification. Since complete test coverage is often infeasible, our ap-
proach automatically selects those test cases that are particularly sensitive to
the specified security requirements [19].

Automated Code Verification against Interface Specifications For highly non-
deterministic systems such as those using cryptography, testing can only provide
assurance up to a certain degree. For higher levels of trustworthiness, it may
therefore be desirable to establish that the code does enforce the annotations by a
formal verification of the source code against the UMLsec interface specifications.
We have developed an approach that does this automatically and efficiently by
proving locally that the security checks in the specification are actually enforced
in the source code.

Automated Code Security Analysis We developed an approach to use automated
theorem provers for first-order logic to directly formally verify crypto-based Java
implementations based on control flow graphs that are automatically generated
(and without first manually constructing an interface specification). It supports
an abstract and modular security analysis by using assertions in the source
code. Thus large software systems can be divided into small parts for which a
formal security analysis can be performed more easily and the results composed.
Currently, this approach works especially well with nicely structured code (such
as created using the MBSE development process).

Secure Software-Hardware Interfaces We have tailored the code security analysis
approach to software close to the hardware level. More concretely, we considered

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 93/136

8

the industrial Cryptographic Token Interface Standard PKCS 11 which defines
how software on untrustworthy hardware can make use of tamper-proof hardware
such as smart-cards to perform cryptographic operations on sensitive data. We
developed an approach for automated security analysis with first-order logic
theorem provers of crypto protocol implementations making use of this standard.

Analyzing Security Configurations We have also performed research on
linking the UMLsec approach with the automated analysis of security-critical
configuration data. For example, our tools automatically checks SAP R/3 user
permissions for security policy rules formulated as UML specifications [13]. Be-
cause of its modular architecture and its standardized interfaces, the tool can
be adapted to check security constraints in other kinds of application software,
such as firewalls or other access control configurations.

Industrial Applications of MBSE include:

Biometric Authentication For a project with an industrial partner, MBSE was
chosen to support the development of a biometric authentication system at the
specification level, where three significant security flaws were found [14]. We also
applied it to the source-code level for a prototypical implementation constructed
from the specification [12].

Common Electronic Purse Specifications MBSE was applied to a security anal-
ysis of the Common Electronic Purse Specifications (CEPS), a candidate for
a globally interoperable electronic purse standard supported by organizations
representing 90 % of the world’s electronic purse cards (including Visa Inter-
national). We found three significant security weaknesses in the purchase and
load transaction protocols [13], proposed improvements to the specifications and
showed that these are secure [13]. We also performed a security analysis of a
prototypical Java Card implementation of CEPS.

Web-based Banking Application In a project with a German bank, MBSE was
applied to a web-based banking application to be used by customers to fill out
and sign digital order forms [6]. The personal data in the forms must be kept
confidential, and orders securely authenticated. The system uses a proprietary
client authentication protocol layered over an SSL connection supposed to pro-
vide confidentiality and server authentication. Using the MBSE approach, the
system architecture and the protocol were specified and verified with regard to
the relevant security requirements.

In other applications [13], MBSE was used . . .

– to uncover a flaw in a variant of the Internet protocol TLS proposed at IEEE
Infocom 1999, and suggest and verify a correction of the protocol.

– to perform a security verification of the Java implementation Jessie of SSL.
– to correctly employ advanced Java 2 or CORBA security concepts in a way

that allows an automated security analysis of the resulting systems.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 94/136

9

– for an analysis of the security policies of a German mobile phone operator
[17].

– for a security analysis of the specifications for the German Electronic Health
Card in development by the German Ministry of Health.

– for the security analysis of an electronic purse system developed for the
Oktoberfest in Munich.

– for a security analysis of an electronic signature pad based contract signing
architecture under consideration by a German insurance company.

– in a project with a German car manufacturer for the security analysis of an
intranet-based web information system.

– with a German chip manufacturer and a German reinsurance company for
security risk assessment, also regarding Return on Security Investment.

– in applications specifically targeted to service-based, health telematics, and
automotive systems.

Recently, there has been some work analyzing trade-offs between security-
and performance-requirements [24, 31].

3 Modelling evolution with UMLseCh

This section introduces extensions of the UMLsec profile for supporting system
evolution in the context of model-based secure software development with UML.

This profile, UMLseCh, is a further extension of the UML profile UMLsec in
order to support system evolution in the context of model-based secure software
development with UML. It is a “light-weight” extension of the UML in the sense
that it is defined based on the UML notation using the extension mechanisms
stereotypes, tags, and constraints, that are provided by the UML standard. For
the purposes of this section, by “UML” we mean the core of the UML 2.0 which
was conservatively included from UML 1.57.

As such, one can define the meta-model for UMLsec and also for UMLseCh
by referring to the meta-model for UML and by defining the relevant list of
stereotypes and associated tags and constraints. The meta-model of the UMLsec
notation was defined in this way in [13]. In this section, we define the meta-model
of UMLseCh in an analogous way.

The UMLseCh notation is divided in two parts: one part intended to be used
during abstract design, which tends to be more informal and less complete in its
use and is thus particularly suitable for abstract documentation and discussion
with customers (cf. Sect. 3.1), and one part intended to be used during detailed
design, which is assumed to be more detailed and also more formal, such that
it will lend itself towards automated security analysis (cf. Sect. 3.2). We discuss
about possible verification strategies based on the concrete notation in Sect. 3.3.

7 http://www.omg.org/spec/UML/1.5

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 95/136

10

3.1 Abstract Notation

We use stereotypes to model change in the UML design models. These extend
the existing UMLsec stereotypes and are specific for system evolution (change).
We define change stereotypes on two abstraction layers: (i) abstract stereotypes
and (ii) Concrete stereotypes. This subsection given an overview of the abstract
stereotypes.

The aim of the abstract change stereotypes is to document change arte-
facts directly on the design models to enable controlled change actions. The
abstract change stereotypes are tailored for modelling a living security system,
i.e., through all phases of a system’s life-cycle.

We distinguish between past, current and future change. The abstract stereo-
types makes up three refinement levels, where the upper level is�change�. This
stereotype can be attached to subsystems and is used across all UML diagrams.
The meaning of the stereotype is that the annotated modelling element and all
its sub-elements has or is ready to undergo change.
�change� is refined into the three change schedule stereotypes:

1. �past change� representing changes already made to the system (typi-
cally between two system versions).

2. �current change� representing changes currently being made to a system.
3. �future change� specifying the future allowed changes.

To track and ensure controlled change actions one needs to be explicit about
which model elements are allowed to change and what kind of change is per-
mitted on a particular model element. For example, it should not be allowed to
introduce audit on data elements that are private or otherwise sensitive, which
is annotated using the UMLsec stereotype �secrecy�. To avoid such conflict,
security analysis must be undertaken by refining the abstract notation into the
concrete one.

Past and current changes are categories into addition of new elements, mod-
ification of existing elements and deletion of elements. The following stereotypes
have been defined to cover these three types of change: �new�, �modified�
and �deleted�.

For future change we also include the same three categories of change and the
following three future change stereotypes have been defined: �allowed add�;
�allowed modify�; �allowed delete�. These stereotypes can be attached
to any model element in a subsystem. The future change stereotypes are used
to specify future allowed changes for a particular model element.

Past and current change The �new� stereotype is attached to a new sys-
tem part that is added to the system as a result of a functionality-driven or a
security-driven change. For security-driven changes, we use the UMLsec stereo-
types secrecy, integrity and authenticity to specify the cause of security-driven
change; e.g. that a component has been added to ensure the secrecy of informa-
tion being transmitted. This piece of information allows us to keep track of the

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 96/136

11

reasons behind a change. Such information is of particular importance for secu-
rity analysis; e.g. to determine whether or which parts of a system (according to
the associated dependencies tag) that must be analysed or added to the target
of evaluation (ToE) in case of a security assurance evaluation.

Tagged values are used to assist in security analysis and holds information rel-
evant for the associated stereotype. The tagged value: {version=version number}
is attached to the�new� stereotype to specify and trace the number of changes
that has been made to the new system part. When a ‘new’ system part is first
added to the system, the version number is set to 0. This means that if a system
part has the�new� stereotype attached to it where the version number is > 0,
the system part has been augmented with additional parts since being added
to the system (e.g., addition of an new attribute to a new class). For all other
changes, the �modified� stereotype shall be used.

The tagged value: {dependencies=yes/no} is used to document whether
there is a dependency between other system parts and the new/modified system
part. At this point in the work, we envision changes to this tag, maybe even
a new stereotype to keep track of exactly which system parts that depends on
each other. However, there is a need to gain more experience and to run through
more examples to make a decision on this issue, as new stereotypes should only
be added if necessary for the security analysis or for the security assurance
evaluation. Note that the term dependencies are adopted from ISO 14508 Part
2 (Common Criteria) [5].

The �modified� change stereotype is attached to an already existing sys-
tem part that has been modified as a result of a functional-driven or a security-
driven change/change request. The tagged values is the same as for the ’new’
stereotype.

The �deleted� change stereotype is attached to an existing system part
(subsystem, package, node, class, components, etc.) for which one or more parts
(component, attributes, service and similar) have been removed as a result of a
functionality-driven change. This stereotype differs from the ’new’ and ’modified’
stereotypes in that it is only used in cases where it is essential to document the
deletion. Examples of such cases are when a security component is removed as a
result of a functionality-driven change, as this often affects the overall security
level of a system. Information about deleted model elements are used as input
to security analysis and security assurance evaluation.

Future change The allowed future change for a modelling element or system part
(subsystem) is adding a new element, modifying an existing element and deleting
elements (�allowed add�, �allowed modify� and �allowed delete�).
We reuse the tagged values from the past and current change stereotypes, except
for ‘version number’ which is not used for future changes.

3.2 Concrete Notation

We further extend UMLsec by adding so called “concrete” stereotypes: these
stereotypes allow to precisely define substitutive (sub) model elements and are

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 97/136

12

Stereotype Base Class Tags Constraints Description

substitute all ref, substitute, FOL formula substitute a model
pattern element

add all ref, add, FOL formula add a model
pattern element

delete all ref, pattern FOL formula delete a model
element

substitute-all subsystem ref, substitute, FOL formula substitute a
pattern group of elements

add-all subsystem ref, add, FOL formula add a group
pattern of elements

delete-all subsystem ref, pattern FOL formula delete a group
of elements

Fig. 4. UMLsecCh concrete design stereotypes

equipped with constraints that help ensuring their correct application. These
differ from the abstract stereotypes basically because we define a precise seman-
tics (similar to the one of a transformation language) that is intended to be the
basis for a security-preservation analysis based on the model difference between
versions.

Figure 4 shows the stereotypes defining table. The tags table is shown in
Figure 5.

Tag Stereotype Type Multip. Description

ref substitute, add, delete, object name 1 Informal type
substitute-all, add-all, of change
delete-all

substitute substitute, list of 1 Substitutives
substitute-all model elements elements

add add, add-all list of 1 New elements
model elements

pattern substitute, add, delete, list of 1 Elements to
substitute-all, add-all, model elements be modified
delete-all

Fig. 5. UMLsecCh concrete design tags

Description of the notation We now describe informally the intended se-
mantics of each stereotype.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 98/136

13

substitute The stereotype substitute attached to a model element denotes the
possibility for that model element to be substituted by a model element of the
same type over the time. It has three associated tags, namely {ref}, {substitute}
and {pattern}.

These tags are of the form

{ ref=CHANGE-REFERENCE },
{ substitute=MODEL-ELEMENT }

and { pattern=CONDITION }.

The tag {ref} takes a string as value, which is simply used as a reference
of the change. The value of this tag can also be considered as a predicate and
take a truth value to evaluate conditions on the changes, as we explain further in
this section. The tag {substitute} has a list of model element as value, which
represents the several different new model elements that can substitute the actual
one if a change occurs. An element of the list contained in the tagged value is a
model element itself (e.g. a stereotype, {substitute = �stereotype�}). To
textually describe UML model elements one can use an abstract syntax as in
[13] or any equivalent grammar. Ideally, tool support should help the user into
choosing from a graphical menu which model elements to use, without the user
to learn the model-describing grammar. The last tag, {pattern}, is optional. If
the model element to change is clearly identified by the syntactic notation, i.e. if
there is no possible ambiguity to state which model element is concerned by the
stereotype�substitute�, the tag pattern can be omitted. On the other hand,
if the model element concerned by the stereotype�substitute� is not clearly
identifiable (as it will be the case for simultaneous changes where we can not
attach the evolution stereotype to all targeted elements at once), the tag pattern
must be used. This tag has a model element as value, which represents the model
element to substitute if a change occurs. In general the value of pattern can be
a function uniquely identifying one or more model elements within a diagram.

Therefore, to specify that we want to change, for example, a link stereotyped
�Internet� with a link stereotyped �encrypted�, using the UMLseCh no-
tation, we attach:

�substitute�
{ ref= encrypt-link }

{ substitute= encrypted }
{ pattern= Internet }

to the link concerned by the change.
The stereotype �substitute� also has a constraint formulated in first

order logic. This constraint is of the form [CONDITION]. As mentioned earlier,
the value of the tag {ref} of a stereotype �substitute� can be used as the
atomic predicate for the constraint of another stereotype �substitute�. The
truth value of that atomic predicate is true if the change represented by the
stereotype�substitute� for which the tag {ref} is associated occurred, false
otherwise. The truth value of the condition of a stereotype�substitute� then

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 99/136

14

represents whether or not the change is allowed to happen (i.e. if the condition
is evaluated to true, the change is allowed, otherwise the change is not allowed).

To illustrate the use of the constraint, let us refine the previous example.
Assume that to allow the change with reference { ref= encrypt-link }, another
change, simply named ”change” for example, has to occur. We then attach the
following to the link concerned by the change:

�substitute�
{ ref= encrypt-link }

{ substitute= encrypted }
{ pattern= Internet }

[change]

add The stereotype �add� is similar to the stereotype �substitute� but,
as its name indicates, denotes the addition of a new model element. It has three
associated tags, namely {ref}, {add} and {pattern}. The tag {ref} has the
same meaning as in the case of the stereotype�substitute�, as well as the tag
{add} (i.e. a list of model elements that we wish to add). The tag{pattern} has
a slightly different meaning in this case. While with stereotype�substitute�,
the tag {pattern} represents the model element to substitute, within the stereo-
type �add� it does not represent the model element to add, but the parent
model element to which the new (sub)-model element is to be added.

The stereotype�add� is a syntactic sugar of the stereotype�substitute�,
as a stereotype�add� could always be represented with a substitute stereotype
(substituting the parent element with a modified one). For example, in the case
of Class Diagrams, if s is the set of methods and m a new method to be added,
the new set of methods is:

s′ = s ∪ {m}

The stereotype �add� also has a constraint formulated in first order logic,
which represents the same information as for the stereotype �substitute�.

delete The stereotype �delete� is similar to the stereotype �substitute�
but, obviously, denotes the deletion of a model element. It has two associated
tags, namely {ref} and {pattern}, which have the same meaning as in the case
of the stereotype �substitute�, i.e. a reference name and the model element
to delete respectively.

The stereotype �delete� is a syntactic sugar of the substitute stereotype,
as a stereotype�delete� could always be represented with a substitution. For
example, if s is the set of methods and m a method to delete, the new set of
methods is:

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 100/136

15

s′ = s \m

As with the previous stereotypes, the stereotype �delete� also has a con-
straint formulated in first order logic.

substitute-all The stereotype�substitute-all� is an extension of the stereo-
type �substitute� that can be associated to a (sub)model element or to a
whole subsystem. It denotes the possibility for a set of (sub)model elements
to evolve over the time and what are the possible changes. The elements of the
set are sub elements of the element to which this stereotype is attached (i.e. a set
of methods of a class, a set of links of a Deployment diagram, etc). As the stereo-
type�substitute�, it has the three associated tags {ref}, {substitute} and
{pattern}, of the form { ref=CHANGE-REFERENCE }, { substitute=MODEL-
ELEMENT } and { pattern=CONDITION }. The tags {ref} and {substitute}
have the exact same meaning as in the case of the stereotype �substitute�.
The tag {pattern}, here, does not represent one (sub)model element but a set
of (sub)model elements to substitute if a change occur. Again, in order to
identify the list model elements precisely, we can use, if necessary, the abstract
syntax of UMLsec, defined in [13].

If we want, for example, to replace all the links stereotyped �Internet�
of a subsystem by links stereotyped �encrypted�, we can then attach the
following to the subsystem:

�substitute-all�
{ ref= encrypt-all-links }

{ substitute=�encrypted�}
{ pattern=�Internet�}

The tags {substitute} and {pattern} here allow a parametrisation of the
tagged values MODEL-ELEMENT and CONDITION in order to keep infor-
mation of the different model elements of the subsystem concerned by the sub-
stitution. For this, we allow the use of variables in the tagged value of both, the
tag {substitute} and the tag {pattern}.

To illustrate the use of the parametrisation in this simultaneous substitution,
consider the following example. Assume that we would like to substitute all the
secrecy tags in the stereotype�critical� by the integrity tag, we can attach:

�substitute-all�
{ ref= secrecy-to-integrity }
{ substitute= { integrity=X } }
{ pattern= { secrecy=X } }

to the model element to which the stereotype �critical� is attached.
The stereotype �substitute-all� also has a constraint formulated in

first order logic, which represents the same information as for the stereotype
�substitute�.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 101/136

16

add-all The stereotype �add� also has its extension �add-all�, which fol-
lows the same semantics as �substitue-all� but in the context of an addi-
tion.

delete-all The stereotype �delete� also has its extension �delete-all�,
which follows the same semantics as �substitue-all� but in the context of
a deletion.

Example Figure 6 shows the use of �add-all� and �substitute-all� on
a package containing a class diagram and a deployment diagram depicting the
communication between two parties through a common proxy server. The change
reflects the design choice to, in addition to protect the integrity of the message
d, enforce the secrecy of this value as well.

Complex changes In case of complex changes, that arise for example if we want
to merge two diagrams having elements in common, we can overload the afore-
mentioned stereotypes for accepting not only lists of elements but even lists of
lists of elements. This is technically not very different from what we have de-
scribed so far, since the complex evolutions can be seen as syntactic sugar for
multiple coordinated single-model evolutions.

3.3 Security preservation under evolution

With the use of the UMLseCh concrete stereotypes, evolving a model means
that we either add, delete, or / and substitute elements of this model explicitly.
In other words, the stereotypes induce sets Add, Del, and Subs, containing the
model elements to be added, deleted and substituted respectively, together with
information about where to perform these changes.

Given a diagram M and a set ∆ of such modifications we denote M [∆] the
diagram resulting after the modifications have taken place. So in general let
P be a diagram property. We express the fact that M enforces P by P (M).
Soundness of the security preserving rules R for a property P on diagram M
can be formalized as follows:

P (M) ∧R(M,∆)⇒ P (M [∆]).

So to reason about security preservation, one has several alternatives, de-
pending on the property P . For some static analysis, it suffices to show that
simultaneous sub-changes contained in ∆ preserve P . Then, incrementally, we
can proceed until reaching P (M [∆]). This can be done by reasoning inductively
inductively by cases given a security requirement on UML models, by consider-
ing incremental atomic changes and distinguishing them according to a) their
evolution type (addition, deletion, substitution) and b) their UML diagram type.

For dealing with behavioural properties one could exploit the divide and
conquer approach by means of compositionality verification results. This idea,
originally described in general in [4] (and as mentioned before, used for safety

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 102/136

17

Channel «substitute−all»
{ref = make−link−secure}
{substitute−all = «encrypted»}
{pattern = «Internet»}

«add−all»
{ref = make−data−secret}
{add−all = {secrecy = X}}
{pattern = {integrity = X}}
[make−link−secure]

sending
«Interface»

send(d:Data)

receiving
«Interface»

receive():Data

R:Receiver

send(d:Data)

S:Sender
{integrity = {d}}

receive():Data

X:Server
{integrity = {d’}}

transmit(d’:Data)

«critical»

«critical»

«send» «send»

Sendercomp

S:Sender

«LAN»
Sendernode

R:Receiver

Receivercomp

«LAN»
Receivernode

X:Server

Servercomp

«LAN»
Servernode

«Internet»

«Internet»

«send»

«send»

Fig. 6. A UMLseCh annotated diagram with simultaneous substitutions and additions

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 103/136

18

properties in [3]), is as follows: given components C and D, we denote with
C ⊗ D its composition. Then, if we now that a security property P holds on
both components separately and some set of rules R are satisfied then P holds
in the composition, we can use this to achieve a more efficient verification under
evolution, given R is easy enough to check. In practice, one often has to modify
just one component in a system, and thus if one has:

P (C) ∧ P (D) ∧R(C,D)⇒ P (C ⊗D)

one can then check, for a modification ∆ on one of the components:

P (C[∆]) ∧ P (D) ∧R(C[∆], D)⇒ P (C[∆]⊗D) = P (C ⊗D)[∆]

and thus benefit from the already covered case P (D) and the efficiency of
R. Depending on the completeness of R, this procedure can also be relevant
for an evolution of both components, since one could reapply the same deci-
sion procedure for a change in D (and therefore can be generalized to more
than two components). The benefit consists in splitting the problem of verifying
the composition (which is a problem with a bigger input) in two smaller sub-
problems. Some security properties (remarkably information flow properties like
non-interference) are not safety properties, and there are interesting results for
their compositionality (for example [23]).

4 Application Examples and Tool Support

4.1 Modelling change of UMLsec Diagrams

Secure Dependency This stereotype, used to label subsystems containing object
diagrams or static structure diagrams, ensures that the �call� and �send�
dependencies between objects or subsystems respect the security requirements on
the data that may be communicated along them, as given by the tags {secrecy},
{integrity}, and {high} of the stereotype �critical�. More exactly, the
constraint enforced by this stereotype is that if there is a �call� or �send�
dependency from an object (or subsystem) C to an interface I of an object (or
subsystem) D then the following conditions are fulfilled.

– For any message name n in I, n appears in the tag {secrecy} (resp.
{integrity}, {high}) in C if and only if it does so in D.

– If a message name in I appears in the tag {secrecy} (resp.{integrity},
{high}) in C then the dependency is stereotyped �secrecy� (resp.
�integrity� , �high�).

If the dependency goes directly to another object (or subsystem) without involv-
ing an interface, the same requirement applies to the trivial interface containing
all messages of the server object.

This property is specially interesting to verify under evolution since it is local
enough to re-use effectively previous verifications on the unmodified parts and
its syntactic nature makes the incremental decision procedure relatively straight-
forward.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 104/136

19 13

<<send>>

+ receive() : Data

<<call>>

SymmetricEncryptionDecryption
{secrecy = {d}}

+ encrypt(d: Data, k: Key) : EncryptedData

+ decrypt(e: EncryptedData, k: Key) : Data

<<critical>>

Symmetric

<<add>>

<<add>>

{add = {<<critical>> secrecy = {d}}}

Client

+ receive() : Data

{ref= add_keys}<<add>>

+ transmit(d: Data)

Client

{add = { :Keys,k:Keys}}

Channel {ref=add_encryption}<<add>>

<<call>>
AsymmetricEncryptionDecryption
<<critical>>

+ decrypt(e: EncryptedData, priv: PrivKey) : Data

{secrecy = {d}}

{add={Symmetric,Asymmetric}}

Asymmetric

Server

secrecy = {d}}}

Client

+ encrypt(d: Data, pub: PubKey) : EncryptedData

{add = {<<critical>>

KS

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

Fig. 7. An evolving class diagram with two possible evolution paths

include evolution stereotypes that precisely define which model elements are to be
added, deleted, or substituted in a model (see also the UMLseCh profile in [15]).

To support the UMLseCh notation, the UMLsec Tool Suite has been extended
to process UML models including annotations for possible future evolutions.4

On the one hand, given the sufficient conditions presented in the previous sec-
tions, if the transformation does not violate them then the resulting model preserves
security. On the other hand, security preserving evolutions may fail to pass the tests
discussed, and be however valid: With respect to the security preservation analysis
procedures, there is a trade-off between their efficiency and their completeness. Es-
sentially, if one would require a security preservation analysis which is complete in
the sense that every specified evolution which preserves security is actually shown
to preserve security, the computational difficulty of this analysis would be com-
parable to a simple re-verification of the evolved model using the UMLsec tools.
Since the goal was to become more efficient that this alternative in general, the
analysis procedures were geared to efficiency in a trade-off against completeness.
However, on the other hand this means that the lack of completeness is not a prob-
lem in terms of usability, because if a specified evolution could not be established
to preserve security, there is still the option to re-verify the evolved model.

It is of interest that the duration of the check for �� secure dependency �� imple-
mented in the UMLsec tool behaves in a more than linear way depending on the
number of dependencies. In Fig. 8 we present a comparison between the running
time of the verification5 on a class diagram where only 10% of the model elements

4 Available online at http://www-jj.cs.tu-dortmund.de/jj/umlsectool/

manuals new/UMLseCh Static Check SecureDependency/index.htm
5 On a 2.26 GhZ dual core processor

Fig. 7. An evolving class diagram with two possible evolution paths

Example The example in Fig. 7 shows the Client side of a communication chan-
nel between two parties. At first (disregarding the evolution stereotypes) the
communication is unsecured. In the packages Symmetric and Asymmetric, we have
classes providing cryptographic mechanisms to the Client class. Here the stereo-
type �add� marked with the reference tag {ref} with value add encryption

specifies two possible evolution paths: merging the classes contained in the cur-
rent package (Channel) with either Symmetric or Asymmetric. There exists also a
stereotype �add� associated with the Client class adding either a pre-shared
private key k or a public key KS of the server. To coordinate the intended evo-
lution paths for these two stereotypes, we can use the following first-order logic
constraint (associated with add encryption):

[add encryption(add) = Symmetric⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric⇒ add keys(add) = KS : Keys]

The two deltas, representing two possible evolution paths induced by this
notation, can be checked incrementally by case distinction. In this case, the evo-

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 105/136

20

Book

Customer Airport

Book a flight

{right=(Book,Admin)}

«rbac»
{protected=(Book)} {role=(Admin,Airport)}

Request flight

Pay

Check availability

Customer

Check−in
{protected=(Check−in−online)}

Check−in
online

Airport

Book
Pay

Request flight

Check−in
online

Book

Check availability

Customer

Book a flight «rbac»

Airport

{protected=(Book,Check−in online)}
{right=(Book,Admin)} {role=(Admin,Airport)}

Fig. 8. Activity Diagram Annotated with �rbac� Before Evolution (left-hand side),
Added Model Elements (middle), and After Evolution (right-hand side)

lution is security preserving in both cases. For more details about the verification
technique see [27].

Role-based Access Control The stereotype �rbac� defines the access rights of
actors to activities within an activity diagram under a role schema. For this
purpose there exists tags {protected}, {role}, {right}. An activity diagram is
UMLsec satisfies �rbac� if for every protected activity A in {protected}, for
which an user U has access to it, there exists a pair (A,R) in {rights} and a pair
(R,U) in {roles}. The verification computational cost depends therefore on the
number of protected activities.

Example In Fig. 8 (left-hand side), we show an activity diagram to which we
want to add a new set of activities, introducing a web-check-in functionality to
a flight booking system. The new activity “Check-in online” (middle of Fig. 8)
is protected, but we do not add a proper role/right association to this activity,
thus resulting in a security violating diagram (right-hand side Fig. 8).

4.2 Tool Support

The UMLsec Tool Suite provides mechanical tool support for analyzing UML
specifications for security requirements using model-checkers and automated the-
orem provers for first-order logic . The tool support is based on an XML dialect
called XMI which allows interchange of UML models. For this, the developer
creates a model using a UML drawing tool capable of XMI export and stores
it as an XMI file. The file is imported by the UMLsec analysis tool (for exam-
ple, through its web interface) which analyses the UMLsec model with respect
to the security requirements that are included. The results of the analysis are

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 106/136

21

given back to the developer, together with a modified UML model, where the
weaknesses that were found are highlighted.

We also have a framework for implementing verification routines for the con-
straints associated with the UMLsec stereotypes. The goal is that advanced users
of the UMLsec approach should be able to use this framework to implement ver-
ification routines for the constraints of self-defined stereotypes. In particular,
the framework includes the UMLsec tool web interface, so that new routines are
also accessible over this interface. The idea behind the framework is to provide
a common programming framework for the developers of different verification
modules. A tool developer should be able to concentrate on the implementation
of the verification logic and not be required to implement the user interface.

As mentioned in Sect. 3, tool support for UMLseCh would be beneficial in
at least two ways:

– Supporting the user in modelling expected evolutions explicitly in a graphical
way, without using a particular grammar or textual abstract syntax, and
supporting the specification of non-elementary changes.

– Supporting the decision of including a change based on verification tech-
niques for model consistency preservation after change.

but more importantly:

– Supporting the decision of including a change based on verification tech-
niques for security preservation after change

First steps in this direction have been done in the context of the EU project
SecureChange for statical security properties. For more details refer to [27].

5 Conclusions and Future Work

For system evolution to be reliable, it must be carried out in a controlled man-
ner. Such control must include both functional and quality perspectives, such as
security, of a system. Control can only be achieved under structured and formal
identification and analysis of change implications up front, i.e. a priori. In this
chapter, we presented a step-by-step controlled change process with emphasis on
preservation of security properties through and throughout change, where the
first is characterized as a security-driven change and the second a functionality-
driven change. As there are many reasons for evolution to come about, security
may drive the change process or be directly or indirectly influenced by it. Our
approach covers both. In particular, the chapter introduces the change notation
UMLseCh that allows for formally expressing, tracing, and analysing for security
property preservation. UMLseCh can be viewed as an extension of UMLsec in
the context of secure systems evolution. We showed how can one use the no-
tation to model change for different UMLsec diagrams, and how this approach
could be useful for tool-aided security verification. Consequently, this work can
be extended in different directions. First of all, compositional and incremental

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 107/136

22

techniques to reason about the security properties covered by UMLsec are nec-
essary to take advantage of the precise model difference specification offered by
UMLseCh. On the other hand, comprehensive tool support for both modelling
and verification is key for a successful application of UMLseCh in practical con-
texts.

Acknowledgements

This research was partially supported by the EU project “Security Engineering
for Lifelong Evolvable Systems” (Secure Change, ICT-FET-231101).

References

1. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske,
D. Plump, A. Schürr, and G. Taentzer. Graph transformation for specification
and programming. Science of Computer Programming, 34(1):1 – 54, 1999.

2. J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow. Model
transformations? transformation models! In Proceedings of the International Con-
ference on Model Driven Engineering Languages and Systems (MODELS), pages
440–453. Springer, 2006.

3. S. Chaki, N. Sharygina, and N. Sinha. Verification of evolving software, 2004.

4. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Pro-
ceedings of the Annual Symposium on Logic in Computer Science (LICS), pages
353–362, June 1989.

5. ISO 15408:2007 Common Criteria for Information Technology Security Evaluation,
Version 3.1, Revision 2: Part 2; Security Functional Components, CCMB-2007-09-
002, September 2007.

6. J. Grünbauer, H. Hollmann, J. Jürjens, and G. Wimmel. Modelling and verification
of layered security protocols: A bank application. In S. Anderson, M. Felici, and
B. Littlewood, editors, SAFECOMP, volume 2788 of Lecture Notes in Computer
Science, pages 116–129. Springer, 2003.

7. R. Heckel. Compositional verification of reactive systems specified by graph trans-
formation. In E. Astesiano, editor, Proceedings of the European Joint Conferences
on Theory and Practice of Software (ETAPS) - Fundamental Approaches to Soft-
ware Engineering (FASE), volume 1382 of LNCS, pages 138–153. Springer, 1998.

8. S. Höhn and J. Jürjens. Rubacon: automated support for model-based compliance
engineering. In Robby [26], pages 875–878.

9. J. Jürjens. Formal Semantics for Interacting UML subsystems. In Proceedings
of the International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS), pages 29–44. International Federation for Informa-
tion Processing (IFIP), Kluwer Academic Publishers, 2002.

10. J. Jürjens. Principles for Secure Systems Design. PhD thesis, Oxford University
Computing Laboratory, 2002.

11. J. Jürjens. Model-based security engineering with UML. In A. Aldini, R. Gorrieri,
and F. Martinelli, editors, FOSAD, volume 3655 of Lecture Notes in Computer
Science, pages 42–77. Springer, 2004.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 108/136

23

12. J. Jürjens. Code security analysis of a biometric authentication system using
automated theorem provers. In Proceedings of the Annual Computer Security Ap-
plications Conference (ACSAC), pages 138–149. IEEE Computer Society, 2005.

13. J. Jürjens. Secure Systems Development with UML. Springer, 2005.
14. J. Jürjens. Sound methods and effective tools for model-based security engineering

with UML. In G.-C. Roman, W. G. Griswold, and B. Nuseibeh, editors, Proceedings
of the International Conference on Software Engineering (ICSE), pages 322–331.
ACM Press, 2005.

15. J. Jürjens. Verification of low-level crypto-protocol implementations using auto-
mated theorem proving. In MEMOCODE, pages 89–98. IEEE, 2005.

16. J. Jürjens. Security analysis of crypto-based Java programs using automated theo-
rem provers. In Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 167–176. IEEE Computer Society, 2006.

17. J. Jürjens, J. Schreck, and P. Bartmann. Model-based security analysis for mobile
communications. In Robby [26], pages 683–692.

18. J. Jürjens and P. Shabalin. Tools for secure systems development with UML.
Intern. Journal on Software Tools for Technology Transfer, 9(5–6):527–544, Oct.
2007. Invited submission to the special issue for FASE 2004/05.

19. J. Jürjens and G. Wimmel. Formally testing fail-safety of electronic purse proto-
cols. In 16th International Conference on Automated Software Engineering (ASE
2001), pages 408–411. IEEE Computer Society, 2001.

20. D. S. Kolovos, R. F. Paige, F. Polack, and L. M. Rose. Update transformations in
the small with the epsilon wizard language. Journal of Object Technology, 6(9):53–
69, 2007.

21. M. Lehman. Software’s future: Managing evolution. IEEE Software, 15(1):40–44,
1998.

22. H. Lipson. Evolutionary systems design: Recognizing changes in security and sur-
vivability risks. Technical Report CMU/SEI-2006-TN-027, Carnegie Mellon Soft-
ware Engineering Institute, September 2006.

23. H. Mantel. On the composition of secure systems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 88–101, Oakland, CA, USA, 2002.
IEEE Computer Society.

24. D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu, T. Israr, G. Georg, R. B.
France, J. M. Bieman, S. H. Houmb, and J. Jürjens. Performance analysis of
security aspects in UML models. In V. Cortellessa, S. Uchitel, and D. Yankelevich,
editors, WOSP, pages 91–102. ACM, 2007.

25. A. Rensink, Á. Schmidt, and D. Varró. Model checking graph transformations: A
comparison of two approaches. In Proceedings of the International Conference in
Graph Transformation (ICGT), pages 226–241. Springer, 2004.

26. Robby, editor. 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008. ACM, 2008.

27. Secure Change Project. Deliverable 4.2. Available as http://www-jj.cs.

tu-dortmund.de/jj/deliverable_4_2.pdf.
28. UML Revision Task Force. OMG Unified Modeling Language: Specification. Object

Management Group (OMG), September 2001. http://www.omg.org/spec/UML/1.
4/PDF/index.htm.

29. UMLsec group. UMLsec Tool Suite, 2001-2011. http://www.umlsec.de.
30. B. Watson. Non-functional analysis for UML models. In Real-Time and Embedded

Distributed Object Computing Workshop. Object Management Group (OMG), July
15–18, 2002.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 109/136

24

31. C. M. Woodside, D. C. Petriu, D. B. Petriu, J. Xu, T. A. Israr, G. Georg, R. B.
France, J. M. Bieman, S. H. Houmb, and J. Jürjens. Performance analysis of
security aspects by weaving scenarios extracted from UML models. Journal of
Systems and Software, 82(1):56–74, 2009.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 110/136

A.10 ARES 2011:
Model-based security verification and testing for smart-
cards

• Elizabeta Fourneret, Martin Ochoa, Fabrice Bouquet, Julien Botella, Jan Jürjens,
and Parvaneh Yousefi. Model-based security verification and testing for smart-
cards. In ARES 2011, 6-th Int. Conf. on Availability, Reliability and Security,
Vienna, Austria, August 2011.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 111/136

Model-Based Security Verification and Testing for Smart-cards

Elizabeta Fourneret∗, Martín Ochoa†,
Fabrice Bouquet∗, Julien Botella‡, Jan Jürjens†, Parvaneh Yousefi†

∗ LIFC, Université de Franche-Comté, Besanon, France
elizabeta.fourneret, fabrice.bouquet@lifc.univ-fcomte.fr

† Software Engineering, Department of Computer Science, TU Dortmund, Germany
martin.ochoa, jan.jurjens, parvaneh.yousefi@cs.tu-dortmund.de

‡Smartesting, TEMIS Innovation, Besanon, France
botella@smartesting.com

Abstract—Model-Based Testing (MBT) is widely used
methodology for generating tests aiming to ensure that the
system behaviour conforms to its specification. Recently, it has
been successfully applied for testing certain security properties.
However, it is important to consider the correctness of test
models with respect to the given security property. In this
paper we present an approach for smart-card specific security
properties that permits to validate the system with MBT from
test schemas. We combine this MBT approach with UMLsec
security verification technique, by using UMLsec stereotypes to
verify the model w.r.t. given security properties and gain more
confidence into the model. Then, we define rule to transform
the stereotype into test schema, used to generate security tests
to be executed on the system. We validate this approach on a
fragment of the Global Platform specification and report on
available tool support.

Keywords-Verification; Model-Based Testing; Model-Based
Testing from schemas; UML/OCL statehchart; smart-cards;

I. INTRODUCTION

Typically, UML models verified against security prop-
erties are explicit models of the system design, whereas
in Model-Based Testing (MBT) we describe the expected
behaviour of an application, seen thus as a blackbox. With
the current state of the art, on one hand it is possible for
a system engineer to design a conception model annotated
with security properties that can be verified using auto-
mated theorem provers and model-checking, for example
using the UMLsec approach [1]. On the other hand, the
validation engineer designs a UML test model, and writes
test scenarios that are used to produce test cases exercising
security properties. This situation is depicted in Figure 1.
The security properties considered for testing are typically
expressed at different abstraction levels with respect to
the used properties, because they will be executed on the
implementation of the system (the System Under Test or
SUT).

However, the test engineer has no formal guarantee that
the test model under consideration is trivially violating the

Figure 1. Our traditional approach to security verification and model-based
testing

security property, that (s)he would like to test. In other
words, little attention is paid to the fact that the expected
behaviour expressed in the model could be contradicting
the property under test1. Thus, our goal is to generate tests
guided by the security properties and the testing model,
but we want to start with a correct model in the first
place. Moreover, it is desirable that the security property
formalized to check the model for correctness can be further
used to generate test sequences following the model based
testing paradigm.

In this paper we consider two generic security properties
that are relevant for smart-cards and we show how can one
benefit from the UMLsec verification approach for security
to ensure the correctness of the UML test model and from
the MBT approach in order to generate tests for complex
situations issued from the security properties. We also show

1This is the case in general, and not only for security properties, in this
paper we focus on security.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 112/136

Figure 2. Model-based Security Engineering

Figure 3. UMLsec Tool support

how the two approaches are linked by means of a testing
Schema language, that can be used to automatically generate
testing sequences.

To validate this approach, we demonstrate our results on
the Global Platform Specification for smart cards [2]. We
also report on available tool support for our approach.

The paper is organized as follows: Section II contains
a summary of the core concepts of the UMLsec approach
while Section III introduces Model-Based Testing for se-
curity, that we consider. Section IV explains how to verify
consistency of the UML testing model with UMLsec with
respect to the chosen security properties. Sect. V contains
the validation case study and summarizes the available tool
support. Relevant related work is discussed in Section VI.

II. BACKGROUND: UMLSEC

Generally, when using model-based development (Fig. 2),
the idea is that one first constructs a model of the system.
Then, the implementation is derived from the model: either
automatically using code generation, or manually, in which
case one can generate test sequences from the model to
establish conformance of the code regarding the model.
In the model-based security engineering (MBSE) approach
based on the UML extension UMLsec, [1], recurring security
requirements (such as secrecy, integrity, authenticity, and
others) and security assumptions on the system environment,
can be specified either within UML specifications, or within
the source code (Java or C) as annotations (Fig. 3). This way
we encapsulate knowledge on prudent security engineering

as annotations in models or code and make it available to
developers who may not be security experts. The UMLsec
extension is given in form of a UML profile using the
standard UML extension mechanisms. Stereotypes are used
together with tags to formulate the security requirements
and assumptions. Constraints give criteria that determine
whether the requirements are met by the system design,
by referring to a precise semantics of the used fragment of
UML. The security-relevant information added using stereo-
types includes security assumptions on the physical level
of the system, security requirements related to the secure
handling and communication of data, and security policies
that system parts are supposed to obey. The semantics for
the fragment of UML used for UMLsec is defined in [1]
using so-called UML statecharts. On this basis, important
security requirements such as secrecy, integrity, authenticity,
and secure information flow are defined.

The UMLsec tool support (cf. Fig.2) can be used to
check the constraints associated with UMLsec stereotypes
mechanically, based on XMI output of the diagrams from
the UML drawing tool in use [3]. They generate logical
formulas formalizing the execution semantics and the anno-
tated security requirements. Automated theorem provers and
model checkers automatically establish whether the security
requirements hold. If not, we can use Prolog to automatically
generate an attack sequence violating the security require-
ment, which can be examined to determine and remove
the weakness. Since the analysis that is performed is too
sophisticated to be done manually, it is also valuable to
security experts. There is also a framework for implementing
verification routines for the constraints associated with the
UMLsec stereotypes. Thus, advanced users of the UMLsec
approach can use this framework to implement verification
routines for the constraints of self-defined stereotypes.

The tags defined in UMLsec represent a set of desired
properties. For instance, ”freshness” of a value means that
an attacker cannot guess what its value was.

In this paper, we present an extension of UMlsec stereo-
types for security relevant properties for smart-cards, which
are used to drive the test generation dedicated to security.
We use then the UMLsec tool to check the property on the
model and extract a logical formula, that are going to be
used to create test schemas, detailed in the next section.

III. TEST GENERATION PROCESS FOR SECURITY
PROPERTIES

Model-Based Testing makes use of selection criteria that
indicates how to select the tests to be extracted from
the model. These criteria usually ensure a given structural
coverage of the model, such as all the states, or all the
transitions, etc.

Each test is a sequence of operation calls with parameter
values, which yields a distinguished execution of the model.
Their results are predicted by the model. Our approach

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 113/136

Figure 4. The Model-Based Process for testing Security Properties

(depicted on the Figure 4) for testing security properties
relies on defining additional selection criteria in the shape
of test schemas. We use the Schema Based Test Generator
(SBTG) to unfold the schema and then we use the Smartest-
ing CertifyIt tool to generate tests dedicated to the security
property. Once the tests are generated it is possible to publish
the tests into a test repository, used for test management.

A test schema is a high level expression that formalizes
the test intention linked to a security property to drive the
automated test generation on the behavioral model. In this
approach, the security requirements that a system must fulfil
are expressed as a set of security properties. We propose test
schemas as a means to exercise the system for validating that
it behaves as predicted by the model w.r.t. these security
properties. Based on his know-how, an experienced security
engineer will imagine possible scenarios in which he or
she thinks the property might be violated by an erroneous
implementation, and then on the basis of this test intention,
(s)he will formalize test schemas to drive the automated test
generation.

In [4] the concepts of such test schemas are defined in
the shape of a language. It is based on regular expressions
and allows the security testing engineer to conceive its test
schemas in terms of states to be reached and operations to
be called. It is based on the work done in [5] and its formal
semantics has been defined in [6].

Based on this conceptual language, an operational lan-
guage has been defined within the SecureChange project
and implemented as a plug-in to the Smartesting suite, to
describe test schemas in a ”textual” way. This language is
called Smartesting schema language. We now present it and
provide a couple of illustrative examples in SectionV.

A. Presentation

A dedicated schema language editor has been imple-
mented as a plug-in of Smartesting CertifyIt. Its aim is to
provide a means to express security properties at a high level,
close to a textual representation or by using usual computer
programming paradigms. The expression of these properties
allows the test specifications generating, called Test Case
Specification - TCS, that are high level scenarios from which
tests will be generated by CertifyIt.

The language relies on combining keywords, to produce
expressions that are both powerful and easy to read by a
validation engineer.
In Table I we define the language keywords. For each
keyword, we give its intuitive meaning.

for_each quantifier for an operation or a behaviour
from to introduce a list of operations or behaviours
then a separator for sequencing the targets to be reached
use to introduce an operation

a behaviour or a variable to use
to_reach to introduce a state to be reached
to_activate to introduce a behaviour to be activated
state_respecting to introduce a constraint that

characterize a set of states
on_instance to introduce an instance on which a constraint holds
any_operation the set of all the operations of the model
any_operation_but the set of all the operations of the

model minus the ones whose list follows
or for a disjunction of operations or of behaviours
any_behaviour_to_cover the set of all the behaviours of the model
any_behaviour_to_cover_but the set of all the behaviours of the

model minus the ones whose list follows
behaviour_activating to introduce a list to be covered of

behaviours tagged in the model
behaviour_not_activating to introduce a list whose complementary

must be covered of behaviours tagged in the model
at_least_once repetition operator indicating to apply

at least once the operation or behaviour previously specified
any_number_of_times repetition operator indicating to apply

any number of times the operation
or behaviour previously specified

$ variable prefix
REQ to introduce a tag that corresponds to a requirement
AIM to introduce a tag that corresponds to an aim

Table I
KEYWORDS FOR THE SMARTESTING SCHEMA LANGUAGE

B. Language Syntax

The syntax of the language is defined by means of the
grammar given in Figure 5. The language makes it possible
to design test schemas as a sequence of quantifiers or blocks,
each block being composed of a set of operations (possibly
iterated at least once, or many times) and aiming at reaching
a given target (a specific state, the activation of a given
operation, etc.).

SCHEME ::= (QUANTIFIER_LIST ,)? SEQ
QUANTIFIER_LIST ::= QUANTIFIER (, QUANTIFIER)∗

QUANTIFIER ::= for_each VAR from (BEHAVIOR_CHOICE
| OP_CHOICE)

BEHAVIOR_CHOICE ::= any_behaviour_to_cover
| any_behavior_to_cover_but

BEHAVIOR_LIST
BEHAVIOR_LIST ::= BEHAVIOR (or BEHAVIOR)∗

BEHAVIOR ::= behavior_activating TAG_LIST
| behavior_not_activating TAG_LIST

TAG_LIST ::= { TAG (, TAG)∗ }
TAG ::= REQ: tag name | AIM: tag name

OP_CHOICE ::= any_operation | OP_LIST
| any_operation_but OP_LIST

OP_LIST ::= OPERATION (or OPERATION)∗
OPERATION ::= operation name

SEQ ::= BLOC (then BLOC)∗
BLOC ::= use CONTROL (RESTRICTION)? (TARGET)?

CONTROL ::= OP_CHOICE | BEHAVIOR_CHOICE | VAR
VAR ::= $variable name

RESTRICTION ::= at_least_once | any_number_of_times
TARGET ::= to_reach STATE

| to_activate BEHAVIOR
| to_activate VAR

STATE ::= state_representing ocl constraint
on_instance instance name

Figure 5. Syntax of the Smartesting Schema Language

We find, that there are several benefits from the Smartest-

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 114/136

ing schema language. Firstly, from a scientific point of view,
the language that is described previousely makes it possible
for the validation engineer to express his or her test schemas
by combining sequences of actions of the system to be
called, along with the description by means of predicates
of the states to be reached by these sequences of calls.
Secondly, from a technological point of view, the language
is designed to be easy to use by a validation engineer.
(S)he writes test schemas in a high level language, in a
textual manner, with constructions that are close to usual
computer programming paradigms. That frees him from
manipulating mathematical notations such as in the temporal
logics. Thirdly, by its expressivity, the language is designed
as a mean for a validation engineer to describe his test
intentions w.r.t. a property that has to be tested. This feature
strongly helps to monitor the coverage of the properties to
be tested.

IV. INTEGRATED APPROACH

In this section, first we describe how can we improve
the quality of the test models by using UMLsec. And
secondly, how to obtain schemas used for test generation
with respect to a given security property from a UMLsec
stereotype. The model that is used for test generation has to
be verified for consistency with respect to the considered
security properties. If not, the model may authorize an
incorrect behaviour and the tests that will be produced will
expect the System Under Test to present the same behaviour
as the model.

Figure 6. Integration of the two approaches

The process is summarized in Fig. 6. First, a validation
engineer designs a test model (Step 1). He then extracts
the security properties from the specification (Step 2). Af-
terwards in Step 3 (s)he writes the corresponding UMLSec
stereotypes. (S)He uses the UMLsec approach to validate
the model against the security properties (Step 4), to make
sure that the model respects them. Once the model is
declared correct, a Hoare triple (more details are given
below) for each property is exported by Step 5. Then, we

use transformation rule to automatize the schema writing
with respect to the property (Step 6). The created schema
(Step 7), can be used to produce test cases exercising the
property (Step 8).

We consider the following two properties that are critical
for a card issuer in order to have control over compromised
running smart-cards.

Security Property 1: For any execution, whenever the
card is set to the state {status} by means of a operation
performed by a privileged application, then it should not be
possible to revert to another state.

This property ensures that whenever an application with
enough privileges terminates a card, the card cannot be put
back in operation. This is an important feature to control
smart-cards running malicious applications or that have been
compromised in some way.

Security Property 2: It should not be possible for
an application that does not have the given privilege
{permission} to set the card into a given state
{status}.

Conversely, to avoid the Denial of Service (D.O.S) attacks
on the card, only applications with sufficient privileges
should be able to terminate the card.

Extending UMLsec stereotypes for the given security
properties: Assuming the SUT has a variable state repre-
senting the card state, we can choose to design the statechart
representing the UML test model associating each UML
status to a possible state in the card’s life-cycle. We further
assume there is a command set_status, only executable by
privileged applications to change from one state to the other,
and this is the event triggering all transitions in the model.
To model failed attempts to change status by an unprivileged
application, we allow internal transitions in a given state to
represent these, for which the consequence is that a variable
statusWord is affected with an error message.

Under this assumptions, a statechart in which from the
{status} status there are not only incoming but also
outcoming transitions 2 would be trivially violating the
Security Property 1. This would contradict the very property
we would like to test and could be the source of misinterpre-
tations of the testing results. Potentially, it could also mean
that the system specification is contradictory with respect to
the wished security properties. To avoid this, we can extend
UMLsec with a stereotype 〈〈 locked-status 〉〉 together with
a tag {status} where a specific status can be defined.
Semantically, a statechart annotated with this stereotype
would require that there are not outgoing transitions from
the state specified in {status}.

Similarly, we can define a stereotype 〈〈 authorized 〉〉 with
two tags {status} and {permission}. This stereotype
enforces that there exists no incoming transition to the
status specified in {status} with a guard NOT containing

2With satisfiable guards, otherwise they would be superfluous.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 115/136

{permission}. Under the assumption that in each tran-
sition from state to state we check for given application
privileges, this stereotype would avoid having a model
trivially violating Security Property 2.

These properties can be checked statically on UML state-
charts since we are not aiming at verifying behavioural prop-
erties, but at ensuring a structural property as a precondition
to the testing process. For example, the check performed by
〈〈 authorized 〉〉 on a statechart S could be summarized by
the Algorithm 1, where Status is the state corresponding
to the value of {status} and the auxiliary function
IncomingTransitions() returns all the incoming transitions
relatively to that status.

Algorithm 1: Algorithm for stereotype ’authorized’

Transitions := Status.IncomingTransitions();
for T in Transitions do

if Permission 6∈ T.Guard then
return false ;

end
end

In a similar way we can define an algorithm
for 〈〈 locked-status 〉〉, where we check whether Sta-
tus.OutgoingTransistions() is empty.

Rules for transformation of UMLsec stereotypes to
Schemas: At the end of the model verification process we
export the security property using Hoare triples 3 encapsu-
lating the expected behaviour of the system after particular
instructions are executed in states that could potentially
violate the properties, should the system not behave as
expected. These will be the basis for generating Testing
Schemas (which will automatically generate test sequences),
thus they represent the link from UMLsec to testing.

Assume S is a set of instructions performed by an
application in the system and T and Q are FOL formulas
quantifying over system variables. Thus, let {T} S {Q} be
generalized exported formula by the UMLsec tool.

When taking into account the locked-status property, the
formula can be exported as:

{state = {status}} set_status {state = {status}}
Let A the application in the system that has a set of

associated permissions A.permissions. We assume that the
set of instructions S does not include an operation that
allows to select another application with different privileges.
Let

P := state 6= {status} ∧ {permission} 6∈ A.permissions.

Then, the authorized-status property can be exported as:

{P} set_status {statusWord = Error_not_Privilege_{permission}}

3A Hoare triple describes how the execution of a piece of commands
changes the state of the system

Intuitively we can define a generic rule to transform the
exported formula by UMLsec into a Schema. We define it
below: {T} S {Q} :

for_each $X from S,
use any_operation any_number_of_times
to_reach state_respecting T
on_instance ’chosen_instance’ then
use $X at_least_once to_reach state_respecting Q
on_instance ’chosen_instance’

So for example for the locked-status property (Sec.
Property 1), the Schema will generate test sequences such
that: the state {status} is reached (by any application),
and afterwards it will choose the set_status operations
that, according to the Testing Model, will still result in
preserving the Terminated state (that is, all possible internal
transitions, since the model has no transition going out of
the {status} state). A test will fail if after an execution
of a set_status operation the resulting state is different
from {status}, since this would contradict the expected
behaviour.

We will consider two instantiations of this transformation
for the given rule in the case of the Global Platform for
smart-cards in the next section, where more details will be
given about the test sequences generated from schemas.

V. VALIDATION

We have applied our methodology to a real case study:
the Global Platform [2] in the context of the SecureChange
project 4. The Global Platform is a non-profit organization
involving over 60 industry members (including American
Express, MasterCard, Visa, Nokia, Sun and Gemalto) that
defines a publicly available smart card application manage-
ment specification 5. The goal of this specification is to
be hardware and operating system neutral and to cover a
wide range of security critical industrial applications and
therefore focuses on many security aspects. For example
precise protocols for the communication of the card with
an application provider or central server are defined aim-
ing at guaranteeing confidentiality, integrity and authentic-
ity aspects of both over-the-air and terminal connections.
Moreover, the Global Platform supports external software
updates. Implementations of the specification with tailored
applications include Financial, Mobile telecommunications,
Government initiatives, Healthcare, Retail merchants and
Transit domains.

The scope of our work is the management of the card
life cycle, from the card’s production until its destruction.
We have created test models for the version on the Card
Life Cycle Scope of Global Platform 2.1.1 [2] respecting
the assumptions mentioned in the previous section: each

4http://www.securechange.eu/
5http://www.globalplatform.org/specificationscard.asp

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 116/136

status of the state-chart correspond to a state of the card
and each transition’s guard from state to state checks for
certain application privileges.

A. Obtained results for GP

As explained previously, our test generation process aims
at creating security based tests. These tests are computed by
animating the model, i.e. by simulating its execution through
its formal description in UML/OCL.

In order to build security-based test cases, we rely on the
use of dedicated test schemas that describe either nominal
test cases, aiming at illustrating the considered property
(i.e. the preservation of secrecy, the denial of an access to
a specific security asset, etc.), or aiming at checking the
robustness of the system towards security. We use them to
obtain more confidence into the system using the UMLsec
approach and then we use Smartesting CertifyIt tool to
generate tests dedicated for security properties testing.

1) Correctness verification with UMLsec: We have ver-
ified the GP 2.1.1 life-cycle testing model using the
stereotypes 〈〈 locked-status 〉〉 and 〈〈 authorized 〉〉 using the
UMLsec tool 6, which we have extended for these new
stereotypes. In this case, the value of {status} is TER-
MINATED (see a fragment of the statechart on Fig.7).

Figure 7. Violating fragment of the GP Life-Cycle

2) Transformation to schemas and Model-based testing
for security properties: When generating test cases from
security property, we first define informally the test intention
as a scenario to test this security property. For the locked-
status property we give below the test intention:
• set the status of the card to TERMINATED;
• try all operations (to see if they behave as predicted by

the model, i.e. by returning a status word of error).
Using the transformation rules, we have obtained the

following test schema, that completely reflects the security
property w.r.t. to the test intention we have defined. We
needed only to define manually the existing model instance,
for which we want to generate tests.
for_each $X from APDU_Set_status
use any_operation any_number_of_times to_reach

6Available on http://www-jj.cs.tu-dortmund.de/jj/umlsectool/

state_respecting (self.state = TERMINATED)
on_instance ”card” then
use $X at_least_once to_reach state_respecting
(self.state = TERMINATED) on_instance ”card”

The test intention for the authorized-status security prop-
erty that we exhibit, is defined informally as a scenario to
test the nominal case of failure of this security property:
• select any application without the Card Terminate Priv-

ilege
• set the card to a state different than terminated
• try to set the status of the card to TERMINATED,

which results with an error code.
Then, we can create the corresponding test schema from

the verified stereotype. We give here one possible trans-
formed schema to cover it. However, sometimes is impossi-
ble to express one property with only one schema and that
there is only one manner to express it.

for_each $X from APDU_Set_status,
use any_operation any_number_of_times to_reach
state_respecting (self.lcs->exists(lc : LogicalChannel|
lc.selectedApp.privileges.cardTerminate=false))
on_instance ”card” then
use any_operation any_number_of_times to_reach
state_respecting (self.state!=TERMINATED)
on_instance ”card” then
use $X at_least_once to_reach state_respecting
(self.StatusWord =
APDU_SETSTATUS_ERROR_MustHaveTerminatePriv)
on_instance ”card”

3) Discussion: Using the UMLsec approach we have
verified our test model and permitted to the user to in-
crease the confidence in it w.r.t the given properties in a
realistic industrial scenario. When generating the tests we
can be sure that the generated tests are consistent w.r.t. the
property. The schema we have created for the locked-status
property sets the card into the state TERMINATED. Then
finds different manners to stay in the same state using the
APDU_Set_Status command. The exit code of this command
results with an error code. The error code corresponds to the
one that the card is already terminated. Thus, we obtain 13
different tests for this property.

For the authorized-status property, using the schema
we have generated 13 tests, also. Each test selects first
an application without terminated privilege and then, the
schema allows to select states different to TERMINATED.
Afterwards, the generator tries to reach the TERMINATE
state. It results with an error code, that the application has
not the privilege to terminate the card. Then, these tests
are ready to be exported and used for testing the program
w.r.t the security property. But, here the created schema does
not select each state different to TERMINATED. It selects
only one among the possible list of states. To include this
possibility, we need to define another variable, for example
$Y, that will iterate the wanted states. Or we can iterate a set

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 117/136

of function behaviors (expressed in the model by using the
keyword REQ and AIM) that we are interested in, and create
tests that reflect the security property. But currently, with
UMLsec we cannot identify the special tags used for testing
REQ and AIM. Our goal is thus, to adapt the exported FOL
formulas and add rules that will enable the transformation to
benefit fully from the schema language expression power.

VI. RELATED WORK

Tests can be obtained by means of a model-checker in
the shape of traces of a model that contradict the properties
(see [7], [8] for example). M. Dwyer, to facilitate the use of
temporal properties by validation engineers, has identified in
[9] a set of design patterns that allow for expressing as tem-
poral properties a set of temporal requirements frequently
met in industrial studies.

Input/Output Labelled Transition System (IOLTS) and
Input/Output Symbolic Transition System (IOSTS) have
frequently been used to specify test purposes [10][11]. These
formalisms specify sequencing of actions by using the same
set of actions as the model, and possess two trap states
named Accept and Refuse. The Accept states are used as end
states for the test generation while the Refuse states allow for
cutting the traces not wanted in the generated tests. These
formalisms are for example used in tools such as TGV [10],
STG [12], TorX [13], Agatha [14].

Some approaches are based on the definition of scenarios
for the test, e.g. in [15][16], where test cases are issued from
UML diagrams as a set of trees. The scenarios are extracted
by a breadth-first search on the trees. A similar approach is
that implemented in the tool Telling TestStories [17], based
on defining a test model from elementary test sequences
made of an initial state, a test story and test data.

Work close to ours is done for Tobias tool[18], which pro-
vides a combinatorial unfolding of some test schemas. The
schemas are sequences of patterns made of operation calls
and parameter constraints. They are unfolded independently
from any model, thus the tests obtained have to be instan-
tiated from a model. In [19], a connection between Tobias
and the UCASTING tool is studied to produce instantiated
tests. UCASTING [20] allows for valuating sequences of
operations that are not or only partially instantiated from
an UML model. Cabrera and Botella in [21], close to the
previous work, use scenarios based on regular expressions,
to enrich the test generation test suite produced by the
Smartesting Test Designer Tool, which cannot generate tests
for dynamic system properties. Thus, they propose scenario
language that can be used by the validation engineer, who
basing on his experience can produce interesting scenarios
to generate tests involving complex situations. Their work,
is an adaptation for UMl base on the work done in [4]. The
conceptual language of [4] from which the Smartesting
Schema Language originates, also, was designed during a
project (RNTL POSE) dedicated to testing the conformance

of a system to a security policy. Its conception has been
guided by the experience of security practitioners, resulting
in a language that well serves the aim of testing security
properties. Indeed, considering both actions to perform and
states to reach is the way a security engineer thinks of testing
a security issue.

The originality of our Schema Language with respect to
these related approaches can be summarized in three points
as discussed in Section III: scientific point of view, tech-
nological point of view and its expressivity. This language
allows a validation engineer to benefit plainly from its good
knowledge of the model and to explicitly use all artifacts of
the model (such as objects names).

Chetali in [22] has pointed out the need to have an
automated approach allowing to prove security properties
on a system and to write scenarios to produce functional
tests as well in the smart-card context. To the extent of
our knowledge there is however so far no published work
on consistent model-based testing for security properties,
neither for smart-cards or in general.

VII. CONCLUSION AND FUTURE WORKS

This paper presents a model-based technique for test
generation from schemas for UML/OCL models and its
integration with the UMLsec verification approach, in order
to gain more confidence in models for testing with respect to
security properties and to facilitate the property expression
from stereotypes into test schemas.

We enhance the verification activities to test models, and
the kind of properties that are verified on the model. In
addition, we propose that both approaches are used by the
same actor (the validation engineer).

As underlined in the discussion part our integrated ap-
proach for now is limited only on two security properties,
thus our goal is to generalize it. For instance the security
property is formalized in UMLsec stereotype and then we
transform it into a schema. Thus, our goal is to make a chain
allowing to produce a schema from an UMLsec stereotype
and vice versa, be able to produce an UMLsec stereotype
from a given schema. It is in our perspective to adapt more
the exported formulas and enrich the transformation rules,
thus to be able to benefit as much as possible of the schema
language expression power. We are limited by the schema
language also, for example we are not able to use explicitly
the operation parameters. We focus also on its improvement.

Furthermore, UMLsec also allows us to model the ad-
versary that can attack the different parts of the system in a
specific way. Thus, we can use UMLsec to generate security
oriented tests.

Another objective is to adapt this approach to smart-card
specifications under evolution and to deal with regression
testing. Thus, we can manage the test life cycle and create
dedicated test suites: regression, evolution, stagnation and
deletion to test as given in [23] by taking into account

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 118/136

evolution and management of security properties w.rt. to the
specification.

ACKNOWLEDGMENT

This research is supported by the EU project Security En-
gineering for Lifelong Evolvable Systems (Secure Change,
ICT-FET-231101).

REFERENCES

[1] J. Jürjens, Secure Systems Development with UML. Springer-
Verlag, 2005.

[2] “Global platform specification 2.1.1,” March, 2003.

[3] “UMLsec tool,” 2001-10, http://umlsec.de.

[4] J. Julliand, P.-A. Masson, and R. Tissot, “Generating
security tests in addition to functional tests,” in AST’08,
3rd Int. workshop on Automation of Software Test, Leipzig,
Germany, May 2008, pp. 41–44. [Online]. Available:
http://doi.acm.org/10.1145/1370042.1370051

[5] P.-A. Masson, M.-L. Potet, J. Julliand, R. Tissot, G. Debois,
B. Legeard, B. Chetali, F. Bouquet, E. Jaffuel, L. Van Aer-
trick, J. Andronick, and A. Haddad, “An access control model
based testing approach for smart card applications: Results of
the POSÉ project,” JIAS, Journal of Information Assurance
and Security, vol. 5, no. 1, pp. 335–351, 2010.

[6] J. Julliand, P.-A. Masson, R. Tissot, and P.-C. Bué, “Generat-
ing tests from B specifications and dynamic selection criteria,”
FAC, Formal Aspects of Computing, vol. 23, no. 1, pp. 3–19,
2011.

[7] A. Gargantini and C. Heitmeyer, “Using model checking to
generate tests from requirements specifications,” SIGSOFT
Softw. Eng. Notes, vol. 24, no. 6, pp. 146–162, 1999.

[8] P. E. Ammann, P. E. Black, and W. Majurski, “Using model
checking to generate tests from specifications,” Formal Engi-
neering Methods, International Conference on, vol. 0, p. 46,
1998.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns
in property specifications for finite-state verification,” in
ICSE’99, 21st international conference on Software engineer-
ing, Los Angeles, California, United States, 1999, pp. 411–
420.

[10] C. Jard and T. Jéron, “Tgv: theory, principles and algorithms:
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” Int. J. Softw. Tools
Technol. Transf., vol. 7, no. 4, pp. 297–315, 2005.

[11] L. Frantzen, J. Tretmans, and T. Willemse, “Test generation
based on symbolic specifications,” in FATES 2004, Formal
Approaches to Software Testing, ser. LNCS, J. Grabowski and
B. Nielsen, Eds., vol. 3395. Springer, 2005, pp. 1–15.

[12] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva, “STG:
A symbolic test generation tool,” in TACAS’02, Tools and
Algorithms for the Construction and Analysis of Systems, ser.
LNCS, vol. 2280. Springer, 2002, pp. 151–173.

[13] G. J. Tretmans and H. Brinksma, “TorX: Automated model-
based testing,” in First European Conference on Model-
Driven Software Engineering, Nuremberg, Germany, Dec.
2003, pp. 31–43.

[14] C. Bigot, A. Faivre, J.-P. Gallois, A. Lapitre, D. Lugato, J.-
Y. Pierron, and N. Rapin, “Automatic test generation with
AGATHA,” in TACAS 2003, Tools and Algorithms for the
Construction and Analysis of Systems, 9th International Con-
ference, ser. LNCS, H. Garavel and J. Hatcliff, Eds., vol.
2619. Springer, 2003, pp. 591–596.

[15] A. Bertolino, E. Marchetti, and H. Muccini, “Introducing a
reasonably complete and coherent approach for model-based
testing,” Electron. Notes Theor. Comput. Sci., vol. 116, pp.
85–97, Jan. 2005.

[16] F. Basanieri, A. Bertolino, and E. Marchetti, “The Cow_Suite
approach to planning and deriving test suites in UML
projects,” in UML’02, 5-th int. conf. on the UML language,
ser. LNCS, vol. 2460, London, UK, 2002, pp. 383–397.

[17] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and
F. Schupp, “Concepts for Model-based Requirements Testing
of Service Oriented Systems,” in Proceedings of the IASTED
International Conference, vol. 642, 2009, p. 018.

[18] Y. Ledru, F. Dadeau, L. Du Bousquet, S. Ville, and E. Rose,
“Mastering combinatorial explosion with the TOBIAS-2 test
generator,” in ASE’07: Procs of the 22nd IEEE/ACM int. conf.
on Automated Software Engineering, 2007, pp. 535–536.

[19] O. Maury, Y. Ledru, and L. du Bousquet, “Intégration de
TOBIAS et UCASTING pour la génération des tests,” in
ICSSEA’03, 16th Int. Conf. on Software and Systems Engi-
neering and their Applications, Paris, France, 2003.

[20] L. Van Aertryck and T. Jensen, “UML-CASTING: Test
synthesis from UML models using constraint resolution,” in
AFADL’03, 2003.

[21] K. Cabrera Castillos and J. Botella, “Scenario based test
generation using test designer,” in SCENARIOS’11, 1st Int.
Workshop on Scenario Based Testing – co-located with
ICST’2011. Berlin, Germany: IEEE Computer Society Press,
Mar. 2011, pp. ***–***, to appear.

[22] B. Chetali, “Security testing and formal methods for high
levels certification of smart cards,” in Proceedings of the 3rd
International Conference on Tests and Proofs, ser. TAP ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 1–5. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-02949-3_1

[23] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selec-
tive test generation method for evolving critical systems,” in
REGRESSION’11, 1st Int. Workshop on Regression Testing
- co-located with ICST’2011. Berlin, Germany: IEEE
Computer Society Press, Mar. 2011, pp. ***–***, to appear.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 119/136

A.11 ECMFA 2012:
Incremental Security Verification for Evolving
UMLsec Models

• Jan Jürjens, Loïc Marchal, Martín Ochoa, and Holger Schmidt. Incremental Secu-
rity Verification for Evolving UMLsec models. In Proc. of the 7th European Con-
ference on Modelling Foundations and Applications, Birmingham, UK (ECMFA’11),
pages 52–68, 2011.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 120/136

Incremental Security Verification
for Evolving UMLsec models?

Jan Jürjens1,2, Löıc Marchal3, Mart́ın Ochoa1 and Holger Schmidt1

1 Software Engineering, Department of Computer Science, TU Dortmund, Germany
2 Fraunhofer ISST, Germany

3 Hermès Engineering, Belgium
{jan.jurjens,martin.ochoa,holger.schmidt}@cs.tu-dortmund.de

loic.marchal@hermes-ecs.com

Abstract. There exists a substantial amount of work on methods, tech-
niques and tools for developing security-critical systems. However, these
approaches focus on ensuring that the security properties are enforced
during the initial system development and they usually have a signifi-
cant cost associated with their use (in time and resources). In order to
enforce that the systems remain secure despite their later evolution, it
would be infeasible to re-apply the whole secure software development
methodology from scratch. This work presents results towards addressing
this challenge in the context of the UML security extension UMLsec. We
investigate the security analysis of UMLsec models by means of a change-
specific notation allowing multiple evolution paths and sound algorithms
supporting the incremental verification process of evolving models. The
approach is validated by a tool implementation of these verification tech-
niques that extends the existing UMLsec tool support.

1 Introduction

The task of evolving secure software systems such that the desired security re-
quirements are preserved through a system’s lifetime is of great importance in
practice. We propose a model-based approach to support the evolution of secure
software systems. Our approach allows the verification of potential future evo-
lutions using an automatic analysis tool. An explicit model evolution implies
the transformation of the model and defines a difference ∆ between the original
model and the transformed one. The proposed approach supports the definition
of multiple evolution paths, and provides tool support to verify evolved models
based on the delta of changes. This idea is visualized in Fig. 1: The starting point
of our approach is a Software System Model which was already verified against cer-
tain security properties. Then, this model can evolve within a range of possible
evolutions (the evolution space). We consider the different possible evolutions
as evolution paths each of which defines a delta ∆i. The result is a number of

? This research was partially supported by the EU project Security Engineering for
Lifelong Evolvable Systems (Secure Change, ICT-FET-231101)

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 121/136

2

Model

Software System

Model

n
Security verified

{Still secure?

{

1

Evolved System

Evolved System

Model

∆1

...
...

∆n

Fig. 1. Model verification problem for n possible evolution paths

evolved Evolved System Modeli. The main research question is “Which of the evo-
lution paths leads to a target model that still fulfills the security properties of
the source model?”.

Theoretically, one could simply re-run the security analysis done to estab-
lish the security of the original model on the evolved model to decide whether
these properties are preserved after evolution. This would, however, result in
general in a high resource consumption for models of realistic size, in particular
since the goal in general is to investigate the complete potential evolution space
(rather than just one particular evolution) in order to determine which of the
possible evolutions preserve security. Also, verification efficiency is very critical
if a continuous verification is desired (i.e. it should be determined in real-time
and in parallel to the modelling activity whether the modelled change preserves
security).

We use models specified using the Unified Modeling Language (UML) 1 and
the security extension UMLsec [6]. The UMLsec profile offers new UML lan-
guage elements (i.e., stereotypes, tags, and constraints) to specify typical secu-
rity requirements such as secrecy, integrity, and authenticity, and other security-
relevant information. Based on UMLsec models and the semantics defined for
the different UMLsec language elements, possible security vulnerabilities can be
identified at an early stage of software development. One can thus verify that
the desired security requirements, if fulfilled, enforce a given security policy. This
verification is supported by a tool suite 2 [8].

In this paper we present a general approach for the incremental security
verification of UML models against security requirements inserted as UMLsec
stereotypes. We discuss the possible atomic (i.e. single model element) evolutions
annotated with certain security requirements according to UMLsec. Moreover,
we present sufficient conditions for a set of model evolutions, which, if satisfied,
ensure that the desired security properties of the original model are preserved
under evolution. We demonstrate our general approach by applying it to a rep-
resentative UMLsec stereotype, 〈〈 secure dependency 〉〉. As one result of our work,
we demonstrate that the security checks defined for UMLsec allow significant
efficiency gains by considering this incremental verification technique.

1 The Unified Modeling Language http://www.uml.org/
2 Available online via http://www-jj.cs.tu-dortmund.de/jj/umlsectool

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 122/136

3

To explicitly specify possible evolution paths, we have developed a further
extension of the UMLsec profile (called UMLseCh) that allows a precise defi-
nition of which model elements are to be added, deleted, and substituted in a
model. Constraints in first-order predicate logic allow to coordinate and define
more than one evolution path (and thus obtaining the deltas for the analysis).

Note that UMLseCh is not intended as a general-purpose evolution modeling
language: it is specifically intended to model the evolution in a security-oriented
context in order to investigate the research questions wrt. security preservation
by evolution (in particular, it is an extension of UMLsec and requires the UMLsec
profile as prerequisite profile). Thus, UMLseCh does not aim to be an alternative
for any existing general-purpose evolution specification or model transformation
approaches (such as [4, 1, 2, 14, 9]). It will be interesting future work to demon-
strate how the results presented in this paper can be used in the context of those
approaches.

This paper is organized as follows: The change-specific extension UMLseCh
is defined in Sect. 2. Sect. 3 explains our general approach for evolution-specific
security verification. Using class diagrams as an example application, this ap-
proach is instantiated in Sect. 4. In Sect.5, we give an overview of the UMLsec
verification tool and how this tool has been extended to support our reasoning
for evolving systems based on UMLseCh. We conclude with an overview of the
related work (Sect. 6) and a brief discussion of the results presented (Sect. 7).

2 UMLseCh: Supporting Evolution of UMLsec Models

In this section we present a further extension of the UML security profile UMLsec
to deal with potential model evolutions, called UMLseCh (that is, an extension
to UML which itself includes the UMLsec profile). Figure 2 shows the list of
UMLseCh stereotypes, together with their tags and constraints, while Fig. 3
describes the tags.

The UMLseCh tagged values associated to the tags {add} and {substitute}
are strings, their role is to describe possible future model evolutions. UMLseCh
describes possible future changes, thus conceptually, the substitutive or ad-
ditive model elements are not actually part of the current system design model,
but only an attribute value inside a change stereotype3. At the concrete level,
i.e. in a tool, this value is either the model element itself if it can be represented
with a sequence of characters (for example an attribute or an operation within
a class), or a namespace containing the model element.

Note that the UMLseCh notation is complete in the sense that any kind of
evolution between two UMLsec models can be captured by adding a suitable
number of UMLseCh annotations to the initial UMLsec model. This can be
seen by considering that for any two UML models M and N there exists a
sequence of deletions, additions, and substitutions through which the model
M can be transformed to the model N . In fact, this is true even when only

3 The type change represents a type of stereotype that includes 〈〈 change 〉〉,〈〈 substitute 〉〉,
〈〈 add 〉〉 or 〈〈 delete 〉〉.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 123/136

4

Stereotype Base Class Tags Constraints Description

change all ref, change FOL formula execute sub-changes
in parallel

substitute all ref, substitute, FOL formula substitute a model
element

add all ref, add, FOL formula add a model
element

delete all ref, delete FOL formula delete a model
element

substitute-all all ref, substitute, FOL formula substitute a
group of elements

add-all all ref, add, FOL formula add a group
of elements

delete-all all ref, delete FOL formula delete a group
of elements

Fig. 2. UMLseCh stereotypes

Tag Stereotype Type Multip. Description

ref change, substitute, add, list of strings 1 List of labels
delete, substitute-all, identifying a
add-all, delete-all change

substitute substitute, list of pairs of 1 List of
substitute-all model elements substitutions

add add, add-all list of pairs of 1 List of
model elements additions

delete delete, delete-all list of pairs of 1 List of
model elements deletions

change change list of references 1 List of
simultaneous
changes

Fig. 3. UMLseCh tags

considering deletions and additions: the trivial solution would be to sequentially
remove all model elements from M by subsequent atomic deletions, and then
to add all model elements needed in N by subsequent additions. Of course, this
is only a thereotical argument supporting the theoretical expressiveness of the
UMLseCh notation, and this approach would neither be useful from a modelling
perspective, nor would it result in a meaningful incremental verification strategy.
This is the reason that the substitution of model elements has also been added
to the UMLseCh notation, and the incremental verification strategy explained
later in this paper will crucially rely on this.

2.1 Description of the Notation

In the following we give an informal description of the notation and its semantics.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 124/136

5

substitute The stereotype 〈〈 substitute 〉〉 attached to a model element denotes
the possibility for that model element to evolve over time and defines what the
possible changes are. It has two associated tags, namely ref and substitute. These
tags are of the form { ref=CHANGE-REFERENCE } and

{ substitute= (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }

with n ∈ N. The tag ref takes a list of sequences of characters as value, each
element of this list being simply used as a reference of one of the changes modeled
by the stereotype 〈〈 substitute 〉〉. In other words, the values contained in this
tag can be seen as labels identifying the changes. The values of this tag can
also be considered as predicates which take a truth value that can be used to
evaluate conditions on other changes (as we will explain in the following). The
tag substitute has a list of pairs of model element as value, which represent the
substitutions that will happen if the related change occurs. The pairs are of the
form (e, e′), where e is the element to substitute and e′ is the substitutive model
element 4. For the notation of this list, two possibilities exist: The elements of the
pair are written textually using the abstract syntax of a fragment of UML defined
in [6] or alternatively the name of a namespace containing an element is used
instead. The namespace notation allows UMLseCh stereotypes to graphically
model more complex changes (cf. Sect. 2.2).

If the model element to substitute is the one to which the stereotype
〈〈 substitute 〉〉 is attached, the element e of the pair (e, e′) is not necessary. In
this case the list consists only of the second elements e′ in the tagged value,
instead of the pairs (this notational variation is just syntactic sugar). If a change
is specified, it is important that it leaves the resulting model in a syntactically
consistent state. In this paper however we focus only on the preservation of
security.

Example We illustrate the UMLseCh notation with the following example. As-
sume that we want to specify the change of a link stereotyped 〈〈 Internet 〉〉 so
that it will instead be stereotyped 〈〈 encrypted 〉〉. For this, the following three
annotations are attached to the link concerned by the change (cf. Figure 4):

〈〈 substitute 〉〉, { ref= encrypt-link }, { substitute= (〈〈 encrypted 〉〉, 〈〈 Internet 〉〉) }

The stereotype 〈〈 substitute 〉〉 also has a list of optional constraints formulated
in first order logic. This list of constraints is written between square brackets and
is of the form [(ref1, CONDITION1), . . . , (refn, CONDITIONn)], n ∈ N, where,
∀i : 1 ≤ i ≤ n, refi is a value of the list of a tag ref and CONDITIONn can be
any type of first order logic expression, such as A ∧ B, A ∨ B, A ∧ (B ∨ ¬C),
(A ∧ B) ⇒ C, ∀x ∈ N.P (x), etc. Its intended use is to define under which
conditions the change is allowed to happen (i.e. if the condition is evaluated to

4 More than one occurrence of the same e in the list is allowed. However, two occur-
rences of the same pair (e, e′) cannot exist in the list, since it would model the same
change twice.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 125/136

6

Sendercomp

S:Sender

Sendernode

{ref = encrypt−link}

{substitute = («Internet», «encrypted»)}

«substitute»«Internet»

Receivercomp

R:Receiver

Receivernode

«send»

Fig. 4. Example of stereotype substitute

true, the change is allowed, otherwise the change is not allowed). As mentioned
earlier, an element of the list used as the value of the tag ref of a stereotype
〈〈 substitute 〉〉 can be used as an atomic predicate for the constraint of another
stereotype 〈〈 substitute 〉〉. The truth value of that predicate is true if the change
represented by the stereotype 〈〈 substitute 〉〉 to which the tag ref is associated
occurred, false otherwise.

To illustrate the use of the constraint, the previous example can be refined.
Assume that to allow the change with reference encrypt-link, another change, sim-
ply referenced as change for the example, has to occur. The constraint [change]
can then be attached to the link concerned by the change. To express for ex-
ample that two changes, referenced respectively by change1 and change2, have
to occur first in order to allow the change referenced encrypt-link to happen, the
constraint [change1 ∧ change2] is added to the stereotype 〈〈 substitute 〉〉 modeling
the change.

add and delete Both 〈〈 add 〉〉 and 〈〈 delete 〉〉 can be seen as syntactic sugar
for 〈〈 substitute 〉〉. The stereotype 〈〈 add 〉〉 attached to a parent model element
describes a list of possible sub-model elements to be added as children to the
parent model element. It thus substitutes a collection of sub-model elements
with a new, extended collection.

The stereotype 〈〈 delete 〉〉 attached to a (sub)-model element marks this ele-
ment for deletion. Deleting a model element could be expressed as the substi-
tution of the model element by the empty model element ∅. Both stereotypes
〈〈 add 〉〉 and 〈〈 delete 〉〉 may also have associated constraints in first order logic.

substitute-all The stereotype 〈〈 substitute-all 〉〉 is an extension of the stereotype
〈〈 substitute 〉〉. It denotes the possibility for a set of model elements of same
type and sharing common characteristics to evolve over time. In this case,
〈〈 substitute-all 〉〉 will always be attached to the super-element to which the sub-
elements concerned by the substitution belong. As the stereotype 〈〈 substitute 〉〉,
it has the two associated tags ref and substitute, of the form { ref=CHANGE-
REFERENCE } and

{ substitute= (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }.

The tags ref has the same meaning as in the case of the stereotype 〈〈 substitute 〉〉.
For the tag substitute the element e of a pair representing a substitution does not
represent one model element but a set of model elements to substitute if a
change occurs. This set can be, for example, a set of classes, a set of methods of a

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 126/136

7

Customer

«Internet»

Servercomp

S:Server

Server

«Internet»

Businesscomp

B:Business

Business

Customercomp

C:Customer

{substitute = («Internet», «encrypted»)}

{ref = encrypt−all−links}

«substitute−all»

System

Fig. 5. Example of stereotype substitute-all

class, a set of links, a set of states, etc. All the elements of the set share common
characteristics. For instance, the elements to substitute are the methods hav-
ing the integer argument “count”, the links being stereotyped 〈〈 Internet 〉〉 or the
classes having the stereotype 〈〈 critical 〉〉 with the associated tag secrecy. Again,
in order to identify the model element precisely, we can use, if necessary, either
the UML namespaces notation or, if this notation is insufficient, the abstract
syntax of UMLseCh.

Example To replace all the links stereotyped 〈〈 Internet 〉〉 of a subsystem so
that they are now stereotyped 〈〈 encrypted 〉〉, the following three annotations
can be attached to the subsystem: 〈〈 substitute-all 〉〉, { ref= encrypt-all-links }, and
{ substitute= (〈〈 Internet 〉〉, 〈〈 encrypted 〉〉) }. This is shown in Figure 5.

A pair (e, e′) of the list of values of a tag substitute here allows us a pa-
rameterization of the values e and e′ in order to keep information of the differ-
ent model elements of the subsystem concerned by the substitution. To allow
this, variables can be used in the value of both the elements of a pair. The
following example illustrates the use of the parameterization in the stereotype
〈〈 substitute-all 〉〉. To substitute all the tags secrecy of stereotypes 〈〈 critical 〉〉 by
tags integrity, but in a way that it keeps the values given to the tags secrecy (e.g.
{ secrecy=d }), the following three annotations can be attached to the subsys-
tem containing the class diagram: 〈〈 substitute-all 〉〉, { ref= secrecy-to-integrity },
and { substitute= ({ secrecy=X }, { integrity=X }) }.

The stereotype 〈〈 substitute-all 〉〉 also has a list of constraints formulated in
first order logic, which represents the same information as for the stereotype
〈〈 substitute 〉〉.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 127/136

8

change The stereotype 〈〈 change 〉〉 is a particular stereotype that represents a
composite change. It has two associated tags, namely ref and change. These
tags are of the form { ref=CHANGE-REFERENCES } and { change=CHANGE-
REFERENCES1, . . ., CHANGE-REFERENCESn }, with n ∈ N. The tag ref has
the same meaning as in the case of a stereotype 〈〈 substitute 〉〉. The tag change
takes a list of lists of strings as value. Each element of a list is a value of a
tag ref from another stereotype of type change.5 Each list thus represents the
list of sub-changes of a composite change modeled by the stereotype 〈〈 change 〉〉.
Applying a change modeled by 〈〈 change 〉〉 hence consists in applying all of the
concerned sub-changes in parallel.

Any change being a sub-change of a change modeled by 〈〈 change 〉〉 must
have the value of the tag ref of that change in its condition. Therefore, any
change modeled by a sub-change can only happen if the change modeled by the
super-stereotype takes place. However, if this change happens, the sub-changes
will be applied and the sub-changes will thus be removed from the model. This
ensures that sub-changes cannot be applied by themselves, independently from
their super-stereotype 〈〈 change 〉〉 modeling the composite change.

2.2 Complex Substitutive Elements

As mentioned above, using a complex model element as substitutive element
requires a syntactic notation as well as an adapted semantics. An element is
complex if it is not represented by a sequence of characters (i.e. it is represented
by a graphical icon, such as a class, an activity or a transition). Such complex
model elements cannot be represented in a tagged value since tag definitions
have a string-based notation. To allow such complex model elements to be used
as substitutive elements, they will be placed in a UML namespace. The name
of this namespace being a sequence of characters, it can thus be used in a pair
of a tag substitute where it will then represent a reference to the complex model
element. Of course, this is just a notational mechanism that allows the UMLseCh
stereotypes to graphically model more complex changes. From a semantic point
of view, when an element in a pair representing a substitution is the name of a
namespace, the model element concerned by the change will be substituted by
the content of the namespace, and not the namespace itself. This type of change
will request a special semantics, depending on the type of element. For details
about this complex substitutions we refer to [15].

3 Verification Strategy

As stated in the previous section, evolving a model means that we either add,
delete, or / and substitute elements of this model. To distinguish between big-
step and small-step evolutions, we will call “atomic” the modifications involving
only one model element (or sub-element, e.g. adding a method to an existing

5 By type change, we mean the type that includes 〈〈 substitute 〉〉, 〈〈 add 〉〉, 〈〈 delete 〉〉 and
〈〈 change 〉〉.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 128/136

9

Airport server

«call»

pay(Real amount): Boolean

requestFlight(): Flight

«critical»

{high={pay(Real amount)}}
Customer «critical»

{high={pay(Real amount)}}

Name: String

Book a flight
«secure dependency»

Fig. 6. Class Diagram Annotated with 〈〈 secure dependency 〉〉

class or deleting a dependency). In general there exist evolutions from diagram
A to diagram B such that there is no sequence of atomic modifications for which
security is preserved when applying them one after another, but such that both
A and B are secure. Therefore the goal of our verification is to allow some
modifications to happen simultaneously.

Since the evolution is defined by additions, deletion and substitutions of
model elements, we introduce the sets Add, Del, and Subs, where Add and
Del contain objects representing model elements together with methods id, type,
path, parent returning respectively an identifier for the model element, its type,
its path within the diagram, and its parent model element. These objects also
contain all the relevant information of the model element according to its type
(for example, if it represents a class, we can query for its associated stereotypes,
methods, and attributes). For example, the class “Customer” in Fig. 6 can be
seen as an object with the subsystem “Book a flight” as its parent. It has associ-
ated a list of methods (empty in this case), a list of attributes (“Name” of type
String, which is in turn an model element object), a list of stereotypes (〈〈 critical 〉〉)
and a list of dependencies (〈〈 call 〉〉 dependency with “Airport Server”) attached
to it. By recursively comparing all the attributes of two objects, we can establish
whether they are equal.

The set Subs contains pairs of objects as above, where the type, path (and
therefore parent) methods of both objects must coincide. We assume that there
are no conflicts between the three sets, more specifically, the following condition
guarantees that one does not delete and add the same model element:

@ o, o′(o ∈ Add ∧ o′ ∈ Del ∧ o = o′)

Additionally, the following condition prevents adding/deleting a model ele-
ment present in a substitution (as target or as substitutive element):

@ o, o′(o ∈ Add ∨ o ∈ Del) ∧ ((o, o′) ∈ Subs ∨ (o′, o) ∈ Subs)

As explained above, in general, an “atomic” modification (that is the action
represented by a single model element in any of the sets above) could by itself
harm the security of the model. So, one has to take into account other modifica-
tions in order to establish the security status of the resulting model. We proceed
algorithmically as follows: we iterate over the modification sets starting with an
object o ∈ Del, and if the relevant simultaneous changes that preserve security
are found in the delta, then we perform the operation on the original model

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 129/136

10

(delete o and necessary simultaneous changes) and remove the processed objects
until Del is empty. We then continue similarly with Add and finally with Subs.
If at any point we establish the security is not preserved by the evolution we
conclude the analysis. Given a diagram M and a set ∆ of atomic modifications
we denote M [∆] the diagram resulting after the modifications have taken place.
So in general let P be a diagram property. We express the fact that M enforces
P by P (M). Soundness of the security preserving rules R for a property P on
diagram M can be formalized as follows:

P (M) ∧R(M,∆) ⇒ P (M [∆]).

To prove that the algorithm described above is sound with respect to a given
property P , we show that every set of simultaneous changes accepted by the
algorithm preserves P . Then, transitively, if all steps were sound until the delta
is empty, we reach the desired P (M [∆]).

One can obtain these deltas by interpreting the UMLseCh annotations pre-
sented in the previous section. Alternatively, one could compute the difference
between an original diagram M and the modified M ′. This is nevertheless not
central to this analysis, which focuses on the verification of evolving systems
rather than on model transformation itself.

To define the set of rules R, one can reason inductively by cases given a
security requirement on UML models, by considering incremental atomic changes
and distinguishing them according to a) their evolution type (addition, deletion,
substitution) and b) their UML diagram type. In the following section we will
spell-out a set of possible sufficient rules for the sound and secure evolution of
class diagrams annotated with the 〈〈 secure dependency 〉〉 stereotype.

4 Application to <<secure dependency>>

In this section we demonstrate the verification strategy explained in the previous
section by applying it to the case of the UMLsec stereotype 〈〈 secure dependency 〉〉

applied to class diagrams. The associated constraint requires for every commu-
nication dependency (i.e. a dependency annotated 〈〈 send 〉〉 or 〈〈 call 〉〉) between
two classes in a class diagram the following condition holds: if a method or
attribute is annotated with a security requirement in one of both classes (for
example { secrecy= {method()} }), then the other class has the same tag for this
method/attribute as well (see Fig. 6 for an example). It follows that the compu-
tational cost associated with verifying this property depends on the number of
dependencies. We analyze the possible changes involving classes, dependencies
and security requirements as specified by tags and their consequences to the
security properties of the class diagram.

Formally, we can express this property as follows:

P (M) : ∀C,C′ ∈M.Classes (∃d ∈M.dependencies(C,C′) ⇒ C.critical = C′.critical)

where M.Classes is the set of classes of diagram M , M.dependencies(C,C ′)
returns the set of dependencies between classes C and C ′ and C.critical returns

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 130/136

11

the set of pairs (m, s) where m is a method or an object shared in the dependency
and s ∈ {high, secrecy, integrity} as specified in the 〈〈 critical 〉〉 stereotype for that
class.

We now analyse the set ∆ of modifications by distinguishing cases on the
evolution type (deletion, addition, substitution) and the UML type.

Deletion

Class : We assume that if a class C̄ is deleted then also the dependencies
coming in and out of the class are deleted, say by deletions D = {o1, ..., on}, and
therefore, after the execution of o and D in the model M (expressed M [o,D])
property P holds since:

P (M [o,D]) :

∀C,C′ ∈M.Classes \ C̄ (∃d ∈M [o,D].dependencies(C,C′) ⇒ C.critical = C′.critical)

and this predicate holds given P (M), because the new set of dependencies of
M [o,D] does not contain any pair of the type (x, C̄), (C̄, x).

Tag in critical : If a security requirement (m, s) associated to in class C̄ is
deleted then it must also be removed from other methods having dependencies
with C (and so on recursively for all classes CC̄ associated through dependencies
to C̄) in order to preserve the secure dependencies requirement. We assume
P (M) holds, and since clearly M.Classes = (M.Classes \ CC̄) ∪ CC̄ it follows
P (M [o,D]) because the only modified objects in the diagram are the classes in
CC̄ and for that set we deleted symmetrically (m, s), thus respecting P .

Dependency : The deletion of a dependency does not alter the property P since
by assumption we had a statement quantifying over all dependencies (C,C ′), that
trivially also holds for a subset.

Addition

Class : The addition of a class, without any dependency, clearly preserves the
security of P since this property depends only on the classes with dependencies
associated to them.

Tag in critical : To preserve the security of the system, every time a method is
tagged within the 〈〈 critical 〉〉 stereotype in a class C, the same tag referring to the
same method should be added to every class with dependencies to and from C
(and recursively to all dependent classes). The execution of these simultaneous
additions preserves P since the symmetry of the critical tags is respected through
all dependency-connected classes.

Dependency : Whenever a dependency is added between classes C and C ′, for
every security tagged method in C (C ′) the same method must be tagged (with
the same security requirement) in C ′ (C) to preserve P . So if in the original
model this is not the case, we check for simultaneous additions that preserve
this symmetry for C and C ′ and transitively on all their dependent classes.

Substitution

Class : If class C is substituted with class C ′ and class C ′ has the same security
tagged methods as C then the security of the diagram is preserved.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 131/136

12 13

<<send>>

+ receive() : Data

<<call>>

SymmetricEncryptionDecryption
{secrecy = {d}}

+ encrypt(d: Data, k: Key) : EncryptedData

+ decrypt(e: EncryptedData, k: Key) : Data

<<critical>>

Symmetric

<<add>>

<<add>>

{add = {<<critical>> secrecy = {d}}}

Client

+ receive() : Data

{ref= add_keys}<<add>>

+ transmit(d: Data)

Client

{add = { :Keys,k:Keys}}

Channel {ref=add_encryption}<<add>>

<<call>>
AsymmetricEncryptionDecryption
<<critical>>

+ decrypt(e: EncryptedData, priv: PrivKey) : Data

{secrecy = {d}}

{add={Symmetric,Asymmetric}}

Asymmetric

Server

secrecy = {d}}}

Client

+ encrypt(d: Data, pub: PubKey) : EncryptedData

{add = {<<critical>>

KS

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

Fig. 7. An evolving class diagram with two possible evolution paths

include evolution stereotypes that precisely define which model elements are to be
added, deleted, or substituted in a model (see also the UMLseCh profile in [15]).

To support the UMLseCh notation, the UMLsec Tool Suite has been extended
to process UML models including annotations for possible future evolutions.4

On the one hand, given the sufficient conditions presented in the previous sec-
tions, if the transformation does not violate them then the resulting model preserves
security. On the other hand, security preserving evolutions may fail to pass the tests
discussed, and be however valid: With respect to the security preservation analysis
procedures, there is a trade-off between their efficiency and their completeness. Es-
sentially, if one would require a security preservation analysis which is complete in
the sense that every specified evolution which preserves security is actually shown
to preserve security, the computational difficulty of this analysis would be com-
parable to a simple re-verification of the evolved model using the UMLsec tools.
Since the goal was to become more efficient that this alternative in general, the
analysis procedures were geared to efficiency in a trade-off against completeness.
However, on the other hand this means that the lack of completeness is not a prob-
lem in terms of usability, because if a specified evolution could not be established
to preserve security, there is still the option to re-verify the evolved model.

It is of interest that the duration of the check for �� secure dependency �� imple-
mented in the UMLsec tool behaves in a more than linear way depending on the
number of dependencies. In Fig. 8 we present a comparison between the running
time of the verification5 on a class diagram where only 10% of the model elements

4 Available online at http://www-jj.cs.tu-dortmund.de/jj/umlsectool/

manuals new/UMLseCh Static Check SecureDependency/index.htm
5 On a 2.26 GhZ dual core processor

Fig. 7. An evolving class diagram with two possible evolution paths

Tag in critical : If we substitute { requirement=method() } by
{ requirement’=method()’ } in class C, then the same substitution must be made
in every class linked to C by a dependency.

Dependency : If a 〈〈 call 〉〉 (〈〈 send 〉〉) dependency is substituted by 〈〈 send 〉〉

(〈〈 call 〉〉) then P is clearly preserved.

Example The example in Fig. 7 shows the Client side of a communication chan-
nel between two parties. At first (disregarding the evolution stereotypes) the
communication is unsecured. In the packages Symmetric and Asymmetric, we have
classes providing cryptographic mechanisms to the Client class. Here the stereo-
type 〈〈 add 〉〉 marked with the reference tag {ref} with value add encryption spec-
ifies two possible evolution paths: merging the classes contained in the current
package (Channel) with either Symmetric or Asymmetric. There exists also a stereo-
type 〈〈 add 〉〉 associated with the Client class adding either a pre-shared private
key k or a public key KS of the server. To coordinate the intended evolution paths
for these two stereotypes, we can use the following first-order logic constraint
(associated with add encryption):

[add encryption(add) = Symmetric⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric⇒ add keys(add) = KS : Keys]

The two deltas, representing two possible evolution paths induced by this
notation, can be then given as input to the decision procedure described for

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 132/136

13

10 30 50 70

To
ta

l t
im

e
in

 s
ec

on
ds

Number of dependencies

Delta-based verification
Re-verification

0.3 0.5 0.8 11

6

51

310

Fig. 8. Running time comparison of the verification

checking 〈〈 secure dependency 〉〉. Both evolution paths respect sufficient conditions
for this security requirement to be satisfied.

5 Tool support

The UMLsec extension [6] together with its formal semantics offers the possibil-
ity to verify models against security requirements. Currently, there exists tool
support to verify a wide range of diagrams and requirements. Such requirements
can be specified in the UML model using the UMLsec extension (created with
the ArgoUML editor) or within the source-code (Java or C) as annotations. As
explained in this paper, the UMLsec extension has been further extended to in-
clude evolution stereotypes that precisely define which model elements are to be
added, deleted, or substituted in a model (see also the UMLseCh profile in [15]).
To support the UMLseCh notation, the UMLsec Tool Suite has been extended
to process UML models including annotations for possible future evolutions.6

Given the sufficient conditions presented in the previous sections, if the trans-
formation does not violate them then the resulting model preserves security. Nev-
ertheless, security preserving evolutions may fail to pass the tests discussed, and
be however valid: With respect to the security preservation analysis procedures,
there is a trade-off between their efficiency and their completeness. Essentially,
if one would require a security preservation analysis which is complete in the
sense that every specified evolution which preserves security is actually shown
to preserve security, the computational difficulty of this analysis could be com-
parable to a simple re-verification of the evolved model using the UMLsec tools.
Therefore if a specified evolution could not be established to preserve security,
there is still the option to re-verify the evolved model.

It is of interest that the duration of the check for 〈〈 secure dependency 〉〉 imple-
mented in the UMLsec tool behaves in a more than linear way depending on the

6 Available online at http://www-jj.cs.tu-dortmund.de/jj/umlsectool/

manuals new/UMLseCh Static Check SecureDependency/index.htm

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 133/136

14

number of dependencies. In Fig. 8 we present a comparison between the running
time of the verification7 on a class diagram where only 10% of the model elements
were modified. One should note that the inefficiency of a simple re-verification
would prevent analyzing evolution spaces of significant size, or to support on-
line verification (i.e. verifying security evolution in parallel to the modelling
activity), which provides the motivation to profit from the gains provided by
the delta-verification presented in this paper. Similar gains can be achieved for
other UMLsec checks such as 〈〈 rbac 〉〉, 〈〈 secure links 〉〉 and other domain-specific
security properties for smart-cards, for which sound decision procedures under
evolution have been worked out (see [15]).

6 Related Work

There are different approaches to deal with evolution that are related to our
work. Within Software Evolution Approaches, [10] derives several laws of soft-
ware evolution such as “Continuing Change” and “Declining Quality”. [12] argue
that it is necessary to treat and support evolution throughout all development
phases. They extend the UML metamodel by evolution contracts to automat-
ically detect conflicts that may arise when evolving the same UML model in
parallel. [16] proposes an approach for transforming non-secure applications into
secure applications through requirements and software architecture models using
UML. However, the further evolution of the secure applications is not consid-
ered, nor verification of the UML models. [5] discussed consistency of models for
incremental changes of models. This work is not security-specific and it considers
one evolution path only.

Also related is the large body of work on software verification based on
Assume-Guarantee reasoning. A difference is that our approach can reason incre-
mentally without the need for the user to explicitly formulate assume-guarantee
conditions.

In the context of Requirements Engineering for Secure Evolution there exists
some recent work on requirements engineering for secure systems evolution such
as [17]. However, this does not target the security verification of evolving design
models. A research topic related to software evolution is software product lines,
where different versions of a software are considered. For example, Mellado et al.
[11] consider product lines and security requirements engineering. However, their
approach does not target the verification of UML models for security properties.
Evolving Architectures is a similar context with a different level of abstraction.
[3] discusses different evolution styles for high-level architectural views of the
system. It also discusses the possibility of having more than one evolution path
and describes tool support for choosing the “correct” paths with respect to prop-
erties described in temporal logic (similar to our constraints in FOL). However,
this approach is not security specific. On a similar fashion, but more focused on
critical properties, [13] also discusses the evolution of Architectures.

The UMLseCh notation is informally introduced in [7], however no details
about verification are given. Both the notation and the verification aspects are

7 On a 2.26 GhZ dual core processor

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 134/136

15

treated in more detail in the (unpublished) technical report [15] of the Se-
cureChange Project. Note that UMLseCh does not aim to be an alternative
for any existing general-purpose evolution specification or model transformation
approaches (such as [4, 1, 2, 14, 9]) or model transformation languages such as
QVT 8 or ATL 9. It will be interesting future work to demonstrate how the
results presented in this paper can be used in the context of those approaches.

To summarize, to the extent of our knowledge there is so far no published
work that considers evolution in the context of a model-based development ap-
proach for security-critical software involving more than one evolution path and
automated model verification.

7 Conclusion

This paper concerns the preservation of security properties of models in different
evolution scenarios. We considered selected classes of model evolutions such as
addition, deletion, and substitution of model elements based on UMLsec dia-
grams. Assuming that the starting UMLsec diagrams are secure, which one can
verify using the UMLsec tool framework, our goal is to re-use these existing ver-
ification results to minimize the effort for the security verification of the evolved
UMLsec diagrams. This is critical since simple re-verification would in general
result in a high resource consumption for models of realistic size, specially if
a continuous verification is desired (i.e. it should be determined in real-time
and in parallel to the modelling activity whether the modelled change preserves
security).

We achieved this goal by providing a general approach for the specification
and analysis of a number of sufficient conditions for the preservation of different
security properties of the starting models in the evolved models. We demon-
strated this approach at the hand of the UMLsec stereotype 〈〈 secure dependency 〉〉.
This work has been used as a basis to extend the existing UMLsec tool framework
by the ability to support secure model evolution. This extended tool supports
the development of evolving systems by pointing out possible security-violating
modifications of secure models. We also show that the implementation of the
techniques described in this paper leads to a significant efficiency gain compared
to the simple re-verification of the entire model.

Our work can be extended in different directions. For example, we plan to
increase the completeness of the approach by analyzing additional interesting
model evolution classes. Also, it would be interesting to generalize our approach
to handle other kinds of properties beyond security properties.

References

1. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske,
D. Plump, A. Schürr, and G. Taentzer. Graph transformation for specification
and programming. Science of Computer Programming, 34(1):1 – 54, 1999.

8 Query/View/Transformation Specification http://www.omg.org/spec/QVT/
9 The ATLAS Transformation Language http://www.eclipse.org/atl/

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 135/136

16

2. J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow. Model
transformations? transformation models! In Proceedings of the International Con-
ference on Model Driven Engineering Languages and Systems (MODELS), pages
440–453. Springer, 2006.

3. D. Garlan, J. Barnes, B. Schmerl, and O. Celiku. Evolution styles: Foundations
and tool support for software architecture evolution. In WICSA/ECSA 2009, pages
131 –140, sept. 2009.

4. R. Heckel. Compositional verification of reactive systems specified by graph trans-
formation. In E. Astesiano, editor, Proceedings of international conference on
Fundamental Approaches to Software Engineering (FASE), volume 1382 of LNCS,
pages 138–153. Springer, 1998.

5. S. Johann and A. Egyed. Instant and incremental transformation of models. In
Proceedings of the International Conference on Automated Software Engineering
(ASE), pages 362–365, Washington, DC, USA, 2004. IEEE Computer Society.

6. J. Jürjens. Principles for Secure Systems Design. PhD thesis, Oxford University
Computing Laboratory, 2002.

7. J. Jürjens, M. Ochoa, H. Schmidt, L. Marchal, S. Houmb, and S. Islam. Mod-
elling secure systems evolution: Abstract and concrete change specifications (in-
vited lecture). In I. Bernardo, editor, 11th School on Formal Methods (SFM 2011),
Bertinoro (Italy) 13-18 June 2011, LNCS. Springer, 2011.

8. J. Jürjens and P. Shabalin. Tools for secure systems development with UML.
Intern. Journal on Software Tools for Technology Transfer, 9(5–6):527–544, Oct.
2007. Invited submission to the special issue for FASE 2004/05.

9. D. S. Kolovos, R. F. Paige, F. Polack, and L. M. Rose. Update transformations in
the small with the epsilon wizard language. Journal of Object Technology, 6(9):53–
69, 2007.

10. M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski.
Metrics and Laws of Software Evolution – The Nineties View. In METRICS’97,
pages 20–32, Washington, DC, USA, 1997. IEEE Computer Society.

11. D. Mellado, J. Rodriguez, E. Fernandez-Medina, and M. Piattini. Automated
Support for Security Requirements Engineering in Software Product Line Domain
Engineering. In AReS’09, pages 224–231, Los Alamitos, CA, USA, 2009. IEEE
Computer Society.

12. T. Mens and T. D’Hondt. Automating support for software evolution in UML.
Automated Software Engineering Journal, 7(1):39–59, February 2000.

13. T. Mens, J. Magee, and B. Rumpe. Evolving Software Architecture Descriptions
of Critical Systems. Computer, 43(5):42 –48, May 2010.

14. A. Rensink, Á. Schmidt, and D. Varró. Model checking graph transformations: A
comparison of two approaches. In Proceedings of the International Conference in
Graph Transformation (ICGT), pages 226–241. Springer, 2004.

15. Secure Change Project. Deliverable 4.2. Available as http://www-jj.cs.tu-
dortmund.de/jj/deliverable 4 2.pdf.

16. M. E. Shin and H. Gomaa. Software requirements and architecture modeling for
evolving non-secure applications into secure applications. Science of Computer
Programming, 66(1):60–70, 2007.

17. T. T. Tun, Y. Yu, C. B. Haley, and B. Nuseibeh. Model-based argument analysis
for evolving security requirements. In SSIRI’10, pages 88–97. IEEE Computer
Society, 2010.

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 136/136

	DOCUMENT INFORMATION
	DOCUMENT CHANGE RECORD
	EXECUTIVE SUMMARY
	INTRODUCTION
	THE UMLCHANGE NOTATION
	The Profile
	Common Properties and Tags
	<> , <<add>> and <<subst>>
	<<edit>>, <<move>> and <<copy>>
	<<del-all>>, <<add-all>> and <<subst-all>>
	Describing Complex Changes Using <<keep>> and <<old>>

	The Grammar
	Simple Element Descriptions
	Referencing Namespaces
	Other Uses of the Grammar

	TOOL SUPPORT
	CARiSMA Architecture
	Extending CARiSMA
	Evolution Support

	Validation
	Difference-Based Security Analysis

	SUPPORT FOR THE CREATION OF TEST SCHEMAS
	Integrated Approach
	Transformation of UMLsec Stereotypes into Test Schemas
	Decreasing Model Comparison Efforts

	STATECHART-BASED MONITORING OF JAVA APPLICATIONS
	Introduction
	Bytecode instrumentation

	Generation of Monitors
	Notation
	Transformation of a UML state diagram

	Implementation
	Monitor Initialization
	Internal Model Representation and Transformation
	Bytecode Instrumentation
	Method Call Validation

	Evaluation
	Application

	LOG-BASED MONITORING OF PROCESSES
	The ProM Framework
	Conversion of Activity Diagrams to Petri Nets
	CARiSMA Check (Activity to Petri Net Converter)
	Application

	CONCLUSIONS
	Appendix
	CARiSMA Plugin List
	UMLchange Profile Diagram
	UMLchange Grammar Keys and Values
	Implementation of Evolution stereotypes
	Export of Evolution Information for SeTGaM
	Algorithm Rules of the Activity to Petri Net Converter
	ESSOS 2012: A Sound Decision Procedure for the Compositionality of Secrecy
	AFADL 2012: Vérification et Test pour des systèmes évolutifs
	SFM 2011: Modelling Secure Systems Evolution
	ARES 2011: Model-based security verification and testing for smart-cards
	ECMFA 2011: Incremental Security Verification for Evolving UMLsec models

