secure >

(CHANGQE

SEVENTH FRAMEWORK
PROGRAMME

D4.3 Tool Support for Evolution-Aware
Security Checks and Monitor Generation

Sven Wenzel (TUD), Daniel Warzecha (TUD), Jan Jurjens (TUD)

Document information

Document Number

D4.3

Document Title

Tool Support for Evolution-Aware Security Checks

and Monitor Generation

Version 1.0
Status Final
Work Package WP 4

Deliverable Type

Report and Prototype

Contractual Date of Delivery

31 January 2012

Actual Date of Delivery

31 January 2012

Responsible Unit

TUD

Contributors

TUD

Keyword List

Model-based verification, Security,

Evolution, Monitoring

Dissemination level

PU

Document change record

Version | Date Status | Author (Unit) Description
0.01 27.09.2011 | Draft S. Wenzel (TUD) Ouitline of the
deliverable
0.02 04.10.2011 | Draft S. Wenzel (TUD), Description of
D. Warzecha (TUD) | planned content
0.03 31.10.2011 | Draft S. Wenzel (TUD), 1st draft of
D. Warzecha (TUD) | Chapters 2,3,4,5
0.04 16.11.2011 | Draft S. Wenzel (TUD), Update of
D. Warzecha (TUD) | Chapters 2,3,4,5
0.05 09.11.2011 | Draft S. Wenzel (TUD), Introduction,
D. Warzecha (TUD) | Conclusion,
Appendix
0.06 02.12.2011 | Draft S. Wenzel (TUD), General update, Exec.
D. Warzecha (TUD) | Summary
0.07 16.12.2011 | Draft S. Wenzel (TUD), General Update
D. Warzecha (TUD), | Version for scientific re-
J. Jurjens (TUD) view
0.08 22.12.2011 | Draft M. Angeli (UNITN) 1st quality check
0.09 30.12.2011 | Draft F. Bouquet (INR), 1st scientific review
E. Chiarani (UNITN),
O. Delande (THA),
F. Innerhofer-
Oberperfler (UIB),
F. Paci (UNITN),
S. Paul (THA)
secure .

D4.3 Tool Support for Evolution-Aware Security Checks
and Monitor Generation

version 1.0| page 2

(CHANGOE

0.10 13.01.2012 | Draft S. Wenzel (TUD), General update w.r.t.
D. Warzecha (TUD) | review results

0.11 18.01.2012 | Draft S. Wenzel (TUD), Completion for second
D. Warzecha (TUD), | reviews
J. Jurjens (TUD)

0.12 20.01.2012 | Draft M. Angeli (UNITN) 2nd quality check

0.13 20.01.2012 | Draft F. Bouquet (INR), 2nd scientific review
E. Chiarani (UNITN),
O. Delande (THA),
F. Innerhofer-
Oberperfler (UIB),
F. Paci (UNITN),
S. Paul (THA)

0.14 26.01.2012 | Draft S. Wenzel (TUD), General update w.r.t.
D. Warzecha (TUD) | 2nd review results

1.0 26.01.2012 | Final S. Wenzel (TUD), Final Version
D. Warzecha (TUD),
J. Jirjens (TUD)

secure .

(CHANGOE

D4.3 Tool Support for Evolution-Aware Security Checks

and Monitor Generation

version 1.0| page 3

Index

DOCUMENT INFORMATION

DOCUMENT CHANGE RECORD

EXECUTIVE SUMMARY!

1 _INTRODUCTION

2 THE UMLCHANGE NOTATION|

[2.1.1 Common Propertiesand Tags| 11
2.1.2 «del», «add» and «subst»| 12
[2.1.3 «edit», «move» and «COPY»| v« v v v i i 13
2.1.4 «del-all», «<add-all» and «subst-all»|. 14
[2.1.5 Describing Complex Changes Using «keep» and «old»| 16
22 The Grammar. 17
[2.2.1 Simple Element Descriptions| 17
[2.2.2 Reterencing Namespaces|. 19

3 TOOL SUPPORT

.1 ARISMA Archi rel . . . e 20
[3.1.1 Extending CARISMA|. 21

[3.1.2 Evolution Supportl 23

3.2 Validation| 24
[3.3 Difference-Based Security Analysis|. 25

4 SUPPORT FOR THE CREATION OF TEST SCHEMAS! 26
[4.1 Integrated Approacn| 26
|4.2 Transtormation of UMLsec Stereotypes into Test Schemas|. 27
[4.3 Decreasing Model Comparison Efforts| 28

o STATECHARI-BASED MONITORING OF JAVA APPLICATIONS

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 4

[9.1.1 Bytecode instrumentation| 29

B.2 Generationof Monitors|.o 30
B21 Nofation|. 31
[5.2.2 Transformation of a UML state diagram| 34

0.3 Implementation| 35
B5.3.1 Monitor Initialization] 35
[5.3.2 Internal Model Representation and Transformation| 36
[9.3.3 Bytecode Instrumentation| 36

6 LOG-BASED MONITORING OF PROCESSES
6.1 The ProM Frameworkl 41
[6.2 Conversion of Activity Diagrams to PetriNets| 43
6.3 CARISMA Check (Activity to Petri Net Converter)| 47
(6.4 Application] 47
49
A Append 53
[A.1 CARISMA PluginListl., 54
|[A.2 UMLchange Profile Diagram| 55
|A.3 UMLchange Grammar Keysand Values| 56
|A.4 Implementation of Evolution stereotypes| 57
|A.5 Export of Evolution Information for SelfGaM|. 58
|{A.6 Algorithm Rules of the Activity to Petri Net Converter| 59
A.7 ESSOS 2012: A Sound Decision Procedure for the Compositionality of |
| SECrECY| . .« o 61
|{A.8 AFADL 2012: Verification et Test pour des systemes éevolutifs| 70
|[A.9 SFM 2011: Modelling Secure Systems Evolution| 86
[A.10 ARES 2011: Model-based security verification and testing for smart-cards| . 111

A

1 ECMFA 2011: Incremental Security Verification for Evolving UMLsec models|1 20

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
V]

version 1.0| page 5

Executive summary

This deliverable describes the results of Task T4.3 “Extend existing security analysis tools
with adaptive security” and Task T4.4 “Develop approach for security monitor generation
for adaptive security” in Year 3 of the SecureChange project. While the description of
work (DoW) declared this deliverable (D4.3) to focus only on T4.4 we decided to include
T4.3 as well, because it has been continued in Year 3 and its results would be unreported
otherwise.

Deliverable 4.1 [42] and Deliverable 4.2 [43] introduced a notation for describing possible
model evolutions that enables automated security checks for all possible evolution paths.
In Year 2, Work Package 4 has been started to implement analysis tools to perform these
checks (i.e. Task T4.3, M18-M30). This task has been continued. The first prototypes
presented in D4.2 have been re-developed and ported to the Eclipse platform to better
integrate with tools of other work packages. Furthermore, the notation for describing
evolutions has been improved. It has also been decoupled from the security notation
UMLsec to enable a usage in other scenarios as well. The new notation and the new tool
are discussed in the first half of this deliverable.

The second part of this deliverable focuses on Task T4.4 “Develop approach for secu-
rity monitor generation for adaptive security” (M31-M36). We present two monitoring
approaches. The first approach is an in-line monitoring approach where the monitor is
generated from UML state charts and integrated into Java software by instrumenting its
byte code. The second approach realizes a monitor where runtime logs of executed
software systems can be compared against activity diagrams describing the expected
behaviour.

Tool-Level Integration

The re-development of our tool prototype from Year 2 resulted in the new tool framework
CARiISMA which smoothly fits into the tool roadmap of the SecureChange project (see

Figure [1).

EvoTest EVe-TCF

Siv

) (operene | [opere |||
I\ A /|| camisma

Rinforzando:

SeAss-MDS MoVE SecMER - CORAS

VeriFast SxC

Papyrus

| EMF-Inciluery | =X

Eclipse

Figure 1: SecureChange tool roadmap

CARIiISMA is based on Eclipse, and the Eclipse Modeling Framework (EMF), respectively.
For modeling arbitrary modeling tools, e.g. Papyrus MDT, can be used. The use of Eclipse
and EMF allows us to better integrate with other tools.

CARISMA has been integrated with EvoTest/SeTGaM (WP7) for model-based testing

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 6

(see Section [4). It can benefit from our approach in two ways. On the one hand, the
security requirements that are checked with CARISMA can be exported in order to gen-
erate test cases. On the other hand, the verified evolutions of a model can be exported
to analyze whether and which test cases have to be adapted. The integration has been
explored within the POPS scenario. The general requirement considered is ‘Specification
Evolution’ and the common property is ‘Life-cycle consistency’.

In addition, the use of EMF enables the analysis of UML2 models which are used by other
partners in the project, too. For example, Thales uses the Papyrus MDT modeling tool
and UML2 models in the ATM case study. The compatibility between the tools enables
an integration of the security analyses developed in WP4 with partners using the same
modeling standards.

The monitoring approaches have not been integrated with other work packages, yet,
because of their late position in project timeline. Their integration could be topic of future
work.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 7

1 Introduction

During Year 1 and Year 2, Work Package 4 worked in the security analysis of evolving
models (Deliverable 4.1 [42] and Deliverable 4.2 [43]). This includes a notation for de-
scribing model evolutions, UMLseCh, and analysis tools to perform automated security
checks. In the last year of the project (Year 3), this work has been continued. Task T4.3
“Extend existing security analysis tools with adaptive security”, which started in Year
2, has been completed. The notation for describing model evolutions, UMLseCh, has
been developed into the new UMLchange profile which fully reflects all aspects for secu-
rity analysis of evolving models and beyond that supports other more general evolution-
related analyses. Furthermore, the prototype tool delivered in Deliverable 4.2 has been
re-developed into a new powerful analysis tool. It has been ported from the proprietary
MDR library [37] onto the Eclipse platform with its Eclipse Modeling Framework (EMF),
the basis for many open and commercial modeling tools. This way, the new tool can
be easily integrated into existing development environments, which eased the integration
with other partners of the SecureChange project. In the POPS case study, the integration
between WP4 and WP7 was brought to tool level. And also in the ATM case study, Thales
was able to use the new tool on Eclipse basis.

In Year 3, Work Package 4 also dealt with Task T4.4 “Develop approach for security mon-
itor generation for adaptive security”. The goal here is to supervise software at runtime
in order to preserve security. After software has been modeled and models have been
checked to be secure, the software is — following the model-driven engineering approach
— generated. However, since software generation is often not 100% sufficient in industrial
scenarios, it can happen, that the generated source code is manipulated subsequently.
Hence, it is necessary to check, that the supplementary changes do not compromise the
security properties that have earlier been verified on the models. In other words, it has to
be ensured that the software conforms to the models. We have realized two alternative
approaches to check the software’s behavior at runtime via monitoring. One approach
is based on in-line monitoring so that Java byte code is extended by routines that report
each method call to a monitor. If the monitor recognizes invalid behavior, it can report an
error or even stop the software execution. The other approach focuses on larger systems
and checks whether the execution logs conform to the previously defined specification.

Chapters Walkthrough This deliverable can be divided into two parts. The first part
deals with the security analysis of evolution. Chapter [2| introduces the new UMLchange
profile that has been developed out of UMLseCh, which was described in the previous
deliverables. It also discusses the grammar that can be used to describe new elements
that are to be inserted into a model. The new analysis tool, CARISMA, is described in
Chapter The chapter also shows details on the evolution support of the tool. The
tool level integrations with model-based testing (WP7) is discussed separately in Chap-
ter[d] The second part of this deliverable deals with the supervision of systems that might
evolve. Therefore, we have developed two monitoring approaches. Chapter [5introduces

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 8

an in-line monitoring approach that generates monitors from UML state charts. An ap-
proach for offline monitoring that compares execution logs with activity diagrams is shown
in Chapter|[6] Finally, we conclude our work and discuss future work in Chapter 7]

Acknowledgements We would like to thank Benjamin Berghoff, Lidiya Kaltchev, Jo-
hannes Kowald, Kubi Mensah, Yousefi Parvaneh, and Klaus Rudack, students of the
TU Dortmund, for their contribution to the tool implementations of this deliverable. We
also warmly thank Daniel Warzecha, former researcher at the TU Dortmund and now
at Fraunhofer ISST, for his help in the tool implementation effort. Special thanks to our
project partners, Michela Angeli, Fabrice Bouquet, Elisa Chiarani, Olivier Delande, Frank
Innerhofer-Oberperfler, Federica Paci, and Stephane Paul for their comments on earlier
versions of this document.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 9

2 The UMLchange Notation

In Year 1 and 2 of the SecureChange project, UMLseCh has been developed as a notation
for describing multiple possible evolution paths of a model [42] 143]. It was further shown
how UMLseCh can be used to improve security analysis for evolving models as models
do not have to be re-verified completely but the verification can be limited to the changes
[26].

UMLseCh was an extension of the well-known UMLsec profile [24]. Hence, it was tightly
bound to security engineering and security analysis. We have now extracted the evolution
specific parts of UMLseCh and elaborated them into the UMLchange profile. The profile
is thus no longer bound to security properties. Although UMLchange is still used in a
security context and together with UMLsec, we decided for the separation of concerns.
Security aspects and evolution aspects are now separated in two different profiles. How-
ever, the merger of both profiles will result in UMLseCh which was already presented,
which can be expressed with the formula:

UMLseCh = UMLsec + UMLchange

Nonetheless, there have been various improvements of the stereotypes for describing
evolution. Therefore, we use this chapter to introduce the new UMLchange profile and
show how it can be used to describe different evolutions. In particular we will explain the
grammar used to describe additive changes, since this has been omitted in Deliverable
4.2. Later in Section|3.1.2] we discuss a parser component that can analyze an annotated
model and compute all possible evolutions out of it.

2.1 The Profile

Figure shows the core elements of the UMLchange profile, i.e. the UMLchange
stereotypes and their properties (also known as tags). The majority of the stereotypes
(excluding «old» and «keep ») describe changes (i.e. the change stereotypes). The
change stereotypes can be applied to any UML model element, as indicated by the ex-
tension relationships targeting meta class Element, the super class of all UML elements.
Change stereotypes extend the abstract stereotype Change, which provides the basic
tags {ref}, {ext} and {constraint}.

Figure provides some examples for using UMLchange. Class Redundant will be
deleted. Class TooConcrete is replaced with the Interface IGeneral. A new element
NewClass is inserted into the main package. Furthermore, class OuterClass will be
moved to package Outside and the class FalseName will be renamed to CorrectName.

The components of the profile are described in more detail below.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 10

1 -

. | .
«Stereatypes - emetaclasss \ «Stereotypes
old | subst
- Element -
- AttributeCompartment wStereotype» + new: String [L.*]
change
- aStereotypes
IoperationCompartment AttributeCompartment M ad;YI
+ ref: String [1..%]

AttributeCompartment

+ constraint: String [*] ; "
«Stereotypes + ext: String [*] Q_/__—’—' + new: String [1.*]

keep OperationCompartment

+ adopter: String [1..%]

OperationCompartment «Sterectypes <]_ «Stereotypes

<]_ change-all subst-all

+ pattern: String [1..%]

1

+ new: String [1.*]

=Stereotypes =Stereotypes «Stereotypes =Stereotypes «Stereotypes «Stereotypes
copy maowve edit del del-all add-all
+ to: String [1.*] +to: String [L.*] || + walues: String [L.*] |[AttributeCompartment + new: String [1.*]

DperationCompartment]

[. \

Figure 2.1: The UMLchange profile (core elements)

<<add>>
PackageP
<> =<<subst=> —
Redundant TooConcrete | syhstB={Interface(name=IGenerall}
- +ProperyBA
+ OperationAl +OperationB11()
+QperationAZ () P
<<movess
OuterClass (I ‘Ito cmoveC={0utside} Iﬁ
+OperationC1 ()
<<edit=>
FalseName - - ‘Ivalues s editName={{hame=CorrectMName)} Iﬁ
+OpearationD1 ()

Outsidel

‘new cnewClass={Class(name=MNewClass)} Iﬁ

Figure 2.2: Examples of Change Stereotypes

2.1.1 Common Properties and Tags

Each UMLchange change description has the following tags: {ref},{ext} and {constraint}.
To enable the description of multiple independent changes at a model element (e.g. two
independent additions, each adding one operation to a class), each of these tags is multi-
valued.

Every change has an ID so that it can be referenced by other changes. The tag {ref}
contains the change IDs for each change at the stereotype application. Each application
of a change stereotype must at least have one ID. These IDs should be unique in the
model scope. The change IDs are used in constraints and in change stereotype tags to
relate their entries to the corresponding change. Examples for IDs are

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 11

deleteTransition, some_Change and add2Operations.

Stereotypes cannot be applied to UML extension elements themselves. {ext} helps to
describe changes of stereotype applications and their tagged values. Its format is

Changel D = Stereotype Name[.T'agN ame]

If a change is directed at a model element, no {ext} entry is necessary. If the change
target is the extension of an element, {ext} follows a convention of most UMLchange
stereotype tag values. Each entry has to be prefixed with the id of the corresponding
change so that entries in the value lists do not need to adhere to a certain order. If the
target is a stereotype application, the name of the applied stereotype must be given. If a
tagged value of a stereotype application is the target of the change, the tag name must
the given in addition to that.

Every change may have constraints attached to it describing when the change may or
may not take place. The corresponding tag {constraint} has the following format:

ChangelI D =AN D(OtherChangel D)|NOT (OtherChangel D)|
REQ(OtherChangelID)], ...]

The obligatory change ID is followed by a constraint that either forces another change
to be simultaneously applied (AND(OtherChangelD)), excludes a change from being ap-
plied simultaneously (NOT(OtherChangelD)) or forces a change to be applied after a cer-
tain other change (REQ(OtherChangelD)). A change may have more than one constraint.
Each constraint can either be a separate {constraint} entry or in a comma-separated list
of constraints as one entry. Contradicting constraints lead to not including any of the
conflicting changes/|

2.1.2 «del» , «<add» and «subst»

The stereotype «del » is used to delete the targeted model element. It recursively deletes
all model elements owned by the targeted element. Any connecting model elements (e.g.
associations) are also deleted to preserve the validity of the model. If the target of «del »
is the multi-valued tagged value of a stereotype application, this stereotype deletes all
values of the tag.

The stereotype «add » serves the purpose of describing additions to model elements.
«add » has to be applied to the elements which will own the new elements. If the target of
«add » is a stereotype application, multi-valued tags receive additional values. Additions
to single-valued tags are treated as substituting the old tagged value with the new value.

Applying «subst » allows to describe the substitution of the targeted model element by
one or more new model elements. The owner of the substitute element or elements is
the parent of the substituted element. By substituting old elements, all of their contained
elements are removed from the model, as well as all connection model elements. To

'The stereotype ChangeSet which was discussed in Deliverable D4.2 [43] is no longer contained in the
profile. It was used to group changes that should be performed together which can now be enforced with the
above-mentioned constraints.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 12

prevent deleting contained elements, the stereotype « keep » must be applied accordingly
(see2.1.5). If tagged values are to be substituted, both single and multi-valued tags are
completely substituted by the new values.

To describe the addition of new model elements or the substitutes of old elements, the
stereotypes «add» and «subst» use expressions built with the UMLchange grammar.
New elements are described by their metaclass names and pairs of keys and values.
The new elements can be further defined by recursively describing contained elements.
Changes on the grammar level are dependent on each other. Alternatives provide the
ability to describe change variations. The elements described inside these alternatives
are meant to be processed together.

The UMLchange grammar expressions are used in the {new} tag. Its format is

Changel D = UM LchangeGrammar Expression

For example, to describe the addition of a new class named someClass to
a package, «add » has to be applied to the package. The appropriate {new} entry is

somel D = {Class(name = someClass)}

somelD is the ID of the corresponding change. The UMLchange grammar is described
in detail in[2.2,

In the example model in Figure 2.3} a new class named ClassX will be added to the main
package. The class will have a String property named someProperty. The stereotype
« critical » will be removed from ClassA. Finally, the class Real implementing the modelled
interface will be substituted by a class named Independent containing some new void
operation. As old connections are not kept, the new class will not need to implement the
modelled interface.

<<add, secure dependency>>
MainPackage

<<critical, del>>
|secrec:y [someDperation().interfaceDp()] [ﬁ_ - ClassA

" e
ext: delStereo=critical +someOperation)
<<interface»>

Interface <<subst>> [y

B Real —aniew : substReal={Classinarne=Independent,
contents=<Operation(hame=some"/oidOperation)»)}

+interfaceOp()

+interfaceOp ()

1
|new: addClass¥={Class(narme=Class¥ contents=<Propery(hame=someProperty type=Sting) >} Iﬁ

Figure 2.3: Adding, Deleting and Substituting Elements

2.1.3 «edit», «<move» and «copy»

Minor changes can be expressed by applying « edit » to a model element. Its tag {values}
has the format
Changel D = {(KeyValuePairs)}], ...]

KeyValuePairs represents the corresponding subset of the UMLchange grammar. The
keys have to be valid attribute names of the targeted element. An example entry to

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 13

change the name of a class to NewName and its visibility to private would be
somel D = {(name = NewName, visibility = private)}

As with the description of new model elements, {values} entries can describe alternative
evolutions using the correct syntax. Editing stereotype applications is not possible, as
changes would amount to redefining the stereotype instead of its application. Editing
tagged values is analogous to substituting old with new tag values.

For structural changes, «copy » is used to indicate that the targeted model element is
to be duplicated in one or more comma-separated namespaces given in the tag {to}.
« move » works in the same vein, but removes the targeted model element from its original
owner and only allows one target namespace. The format of {to} is

Changel D = {Qualified N amespace|(KeyV aluePairs)]|, ...]}[, -..]

The QualifiedNamespace needs to be qualified in so far that the uniqueness of the
namespace in the model is guaranteed. The copied or moved model element in the
target namespace can then be modified with KeyValuePairs using the same format as in
the {values} tag of «edit». Multiple destination namespaces must be comma-separated.
An example for an entry in {to} is

copySomething ={mainPackage :: SubPackage(name = NewName),

mainPackage :: SubPackage(name = Other NewName)}

This describes two copies of the targeted model element to the same SubPackage, re-
naming each one in the process. For obvious reasons it is not allowed to copy a model
element to the same namespace as the source element without changing the name of
the copied element.

If a stereotype application is the target, all of its tagged values are also copied to the
targeted element. If the targeted element already has the stereotype applied to it, all
tagged values are replaced in the process. It is not allowed to change the name of the
stereotype, as this would change the applied stereotype itself.

In the example model (see Figure [2.4), class ClassE has «critical » applied to it. « edit »
is applied to change the value of {high} to only contain operationA. ClassM is moved
alternatively to either package TargetP or TargetP2. Finally, ClassC is copied to both
TargetP and TargetP2.

2.1.4 «del-all», «add-all» and «subst-all»

These three stereotypes allow to describe changes to multiple model elements. They are
applied to the namespace in which the changes are to take place. Apart from the {new}
tag, which works the same way as with the namesakes of the stereotypes, the {pattern}
tag allows to identify the model elements in the namespace affected by the described

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 14

IdainPackage TargetP

<<edit, critical>> |h|gh : [operationAl.operationB()] Iﬁ
ClassE L~ =

+operationAl)

+oparations () ext : editStereo=critical high

values : editStereo={(value=operationA{)}

“<moves> TargetP2

Classht ‘Itu - moveClass={TargetFL{TargetF2} Iﬁ

+somedperation ()

<<COpy>>
ClassC

‘Ito :copyClass={TargetP, TargetPZ} H

+otherOperation ()

Figure 2.4: Editing, Moving and Copying Elements
change. The format of {pattern} is
Changel D = TargetedElementsPattern

After the change ID, the TargetedElementsPattern uses the same syntax as the Simple
Element Descriptions. First the metaclass of the targeted elements must be given. For
example, if the given metaclass is Class, then the changes would affect all classes in the
namespace marked with the *-all stereotype. Following the metaclass, the affected ele-
ments can be further filtered by giving key value pairs defining certain attributes that the
affected elements must possess. For example, to affect all dependencies having a cer-
tain supplier, the entry would be Dependency(supplier=somePackage:.certainSupplier).
Some further examples for entries in {pattern} are

e Dependency(supplier=somePackage::certainSupplier,
contents=<Stereotype(name=secrecy)>)

— all dependencies that have the supplier somePackage::certainSupplier and the
stereotype application of « secrecy »

e Action(contents=<Stereotype>)
— all stereotyped actions

In the example model (see Figure[2.5), all classes in package PackageA with the property
bitrate will receive a new property named length. Furthermore, all operations named
setlnput2 in PackageB will be removed from their respective classes.

pattern : addlLength=
¢<adc-all>>||Class(contents=<Prapertyiname=hitrate)>)
Packagea |INe%: addlength={Property(name=|engthi}
= e <detlal>> pattern : dellnputz=
VideoData User P i by g Dperation(name=setihput2))
+hitrate L|+name ackage |
+ directar +email Algorithm1 Algorithm2 i
T '

AudioData +setinput! § +setinput] () !

- i
+bitrate Algorithms | L=Einewed |,
+interpreter

+setinput] ()
+setinputz ()

Figure 2.5: Changing Element Sets with Patterns

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 15

2.1.5 Describing Complex Changes Using «keep» and «old»

Describing complex changes with the UMLchange grammar can lead to long-winded
grammar expressions. To provide a simpler method for modelling complex changes,
UMLchange provides the ability to reference changes modelled in a namespace in the
original model. The namespace containing the new model elements can be placed any-
where in the model.

To connect the new model elements to the correct owner in the original model, the owner
relation has to be modelled in the namespace by modelling the owners of the new ele-
ments. However, it is not necessary to completely re-model the owning elements. For
example, one would not need to re-model a class with all of its operations and attributes
to model two new operations for it. Instead it is sufficient to just model the owning class
and its name, as long as the class can be uniquely identified within the original model. To
support this method, «old » is used to mark those incompletely modelled references to
the original model.

In addition to that, «keep » is used to mark model elements that would otherwise be
removed in the process of substituting a model element. Its tag {adopter} has the format

Changel D = { AdoptingElement Description}|, ...]

As each alternative description in {new} could describe different new elements, an entry
in {adopter} must describe the receiving element for each alternative in {new}. If an alter-
native of {new} should not receive the element, its corresponding alternative in {adopter}
is left empty. If, after a certain point, the remaining alternatives don’t receive the ele-
ment, then the entries can be omitted. Transferring model elements using « keep » is only
supported when complex namespaces are used to describe the new model elements.

The AdoptingElementDescription uses the same syntax as the simple element descrip-
tions (see Section [2.2). For example, let « subst » be applied to a class. Its {new} entry

substClass = {@QnewFElements}, {QotherVersion)}

means that the old class is either substituted by the elements in the namespace newEle-
ments or alternatively by those elements in otherVersion. To keep some old contained
element of the old class, it has to be marked with « keep ». If, for example, an old element
is to be left out in the first alternative and should be adopted by a class NewClass when
using the second alternative, the appropriate entry for {adopter} is

substClass = {},{Class(name = NewClass)}

In the example model (see Figure [2.6), ClassA will be substituted by two new classes,
NewClassA and OtherNewClass. The old operation keptOperation will be adopted by
NewClassA. In addition to that, several new attributes and operations will be added to
ClassB, as modelled in the namespace NewContents.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 16

ainPackage SubstPackage

<<subst>> NewClassA [OtherNewClass|
ClassA new.5ub3tCIassA={@SubstPa:kage}Iﬁ +newPraperty + otherProperty ‘
+newQperation) I
+keptOperation ()
<<keep>> (at keptOperationf)) MNewCantents
adopter : substClassA={Class(name=MNewClassA)} <<old>>
<<add>> ClassB
ClassB +newPropertyB
+newPropertyC
*givenPropertyA ‘Inew.addtDC\as38={@N9w0uﬂlemls} Iﬁ o pert A
+givenOperation () *ngoperahun40
+givenOperations) +newOperationd ()

Figure 2.6: Describing Complex Changes with Namespaces

2.2 The Grammar

The UMLchange grammar can be used to describe changes adding new model elements
to existing elements. Each change consists of one or more comma-separated descrip-
tions of alternative evolutions. The format for these alternatives is:

{Description}

The description can be either a series of comma-separated simple element descriptions
depicting new model elements or the single reference of a namespace wherein the addi-
tions to the model are shown.

An example for the UMLchange grammar is

{Class(name = NewClass), Class(name = Other NewClass, visibility = private)},
{QaddClasses}

This example poses two alternative evolutions. The first adds two classes named New-
Class and OtherNewClass, of which the second receives a private visibility. The second
alternative references a namespace addClasses in the model. The referenced names-
pace contains new model elements to be added to the original model, by either adding to
old model elements using «old » or substituting model elements while keeping some of
their contents using « keep ».

2.2.1 Simple Element Descriptions

Simple element descriptions (SED) succinctly describe a UML model element. The for-
mat of an SED is:
Metaclass(KeyV aluePairs)

Each SED starts with the metaclass name of the new element. Every UML metaclass
of an actual non-abstract model element can be used. Apart from that, simple comma-
separated key-value pairs can be given to set the properties of the new model elements,
ranging from common properties (e.g. name) to connection-specific ones (e.g. source
and target for an association). The format of a key-value pair is:

key = value

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 17

When setting values for properties which reference other model elements in the original
model, a sufficiently qualified string representation of the referenced model element has
to be given. In the example model (see Figure [2.7), two different classes of the same
name WantedClass exist in two different packages SuperPackage and SubPackage. To
reference a class, the containing package namespace has to be incorporated into the at-
tribute value. However, it is not necessary to add the model namespace to the reference,
as the containing package namespace is sufficient to identify the referenced class.

package SuperFackage)

WantedClass

SubPackagel

WantedClass

Figure 2.7: Different Namespaces
Table shows some metaclasses, their corresponding keys, their value type and a
description. The value type of a key may be a String, an element of a given enumeration,
or the adequately qualified reference to a model element.

Metaclass Key(s) Type Description

all named elements | name String model element name

Property value String, new tagged value

(Tagged Value) Reference

Class visibility Enumeration | public, private,

protected or package

Association sourceEndKind, | Enumeration | composite,
targetEndKind shared or none
source, target Reference qualified classifier

Dependency supplier, client Reference qualified classifier

Table 2.1: Excerpt of Metaclasses, Keys and Values

Apart from describing the new model element itself, an additional optional key named
contents with the format

contents =< SimpleElementDescriptions >

provides the means to describe further new model elements that are contained in the
new element, e.g. an operation to be owned by a new class. The usage of the contents
key is not restricted by a maximum depth.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 18

2.2.2 Referencing Namespaces

To avoid long descriptions of complex additions, the UMLchange grammar allows to refer-
ence namespaces containing the new elements. The syntax for namespace referencing
is

@NamespaceN ame

The namespaces referenced by the namespace name must be placed in the scope of
the original model, but it is not necessary to place them in the same scope where the
changes will take place. Connecting the new elements of the namespace to the original
model is accomplished by modeling part of the target model element and application of
the «old » stereotype (see Section[2.1.5).

2.2.3 Other Uses of the Grammar

Other stereotypes of the UMLchange profile use subsets of the UMLchange grammar to
provide a consistent syntax (see table[2.2).

Stereotype Tag Subset Example
«edit » values | KeyValuePairs (name=NewName,
visibility=private)

« COpy »,« move » to

«copy »,«move » | to QualifiedNamespace | SomePackage::
SubPackage::TargetClass

«del-all », pattern | SimpleElement- Class(name=SomeClass,

«add-all », Description contents=<Stereotype(

« subst-all » name=UMLsec::critical)>)

« adopter » adopter

Table 2.2: Other Uses of the UMLchange Grammar

{values} of stereotype «edit» uses the same key-value pairs to describe changes to
model element attributes, as does {to} of «copy » and « move ». The target of the copy
or move operation is an adequately qualified namespace equivalent to the model ele-
ment references used in simple element descriptions. The descriptions of the targeted
elements of the *-all stereotypes using {pattern} are the grammar’s simple element de-
scriptions, as is the target element description of {adopter}.

One of the features of the new CARISMA tool is its ability to parse the different elements
of the UMLchange grammar and create appropriate change structures. These can then
be used to analyse the possible evolutions on a given model.

Due to the migration of the profile UMLseCh to UMLchange, the UMLsec analysis tool
and in particular its evolution aware parts have been adapted. The new tool is discussed
in the following chapter.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 19

3 Tool Support

For all approaches towards security enhancement, it is necessary that they are applicable
in practice and thus supported by tools. In Year 1 and 2 of the project, we have created
formal foundations for security analyses of evolving models. Furthermore, as part of
Deliverable 4.2 [43], we have presented a first prototype of an analysis tool that can
perform such evolution-aware security analyses. It was implemented on the basis on
the UMLsec tool, which implements already a large number of security analyses (without
evolution support).

It was a problem, that the UMLsec tool was already ten years old and built on the basis
of the MDR library [37], which is since 2003 no longer maintained. The extensions of the
UMLsec tool were thus only realizable with enormous effort. In addition, the integration
with project partners was hampered, since the tool was limited to UML 1.4 models cre-
ated with ArgoUML [46], which rarely find application in industrial cases. Especially the
missing support of UML 2.x was not adequate.

As a consequence, we decided to re-develop the core of the UMLsec tool into a new tool
called CARiISMA. The new tool is built on the basis of Eclipse and the Eclipse Modeling
Framework (see Section and thus supports UML 2.x by using the Eclipse UML2
Plugins which is starting to become a de-facto standard for many commercial and/or
open-source modeling tools such as Papyrus MDT [14], TOPCASED [47], MagicDraw
[23], and IBM Rational Software Architect [22]. Furthermore, as an Eclipse plugin, the
new analysis tool can be smoothly integrated into the modeling tools or other tools which
are based on Eclipse. In addition, the new architecture allows users to extend the tool,
as we will show in what follows.

In Section[3.2|we briefly discuss the tool validation. We conclude with a preview on future
work in Section 3.3

3.1 CARISMA Architecture

CARISMA [9] is implemented as an Eclipse [12] plug-in. Since version 3.0, the architec-
ture of the integrated development environment (IDE) Eclipse is based on the Equinox
kernel. This kernel was developed as a Java framework, and implements the OSGi core
specification, a hardware independent and dynamic software platform enabling applica-
tion management by the component model. As a result, Eclipse now exists only as a
core, which reloads functions in the form of plug-ins.

CARiSMA is fully integrated into the Eclipse GUI (see Figure [3.7). It provides both an
Analysis Wizard (1) for model analysis creation and an Analysis Editor GUI extension
(2) to modify the settings of existing analyses. Furthermore, the results of an executed
analysis are displayed in the Analysis Results view (3).

Model access for analysis is provided via the Eclipse Modeling Framework (EMF) [11],

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 20

= lava - TestProj/testingAddAuthorized.adf - Eclipse Platform = = &

File Edit Mavigate Search Project Run File Window Help Window Help

wifhd HF-O-Q- O HEG S EES T (i R R CRCR EED
* “testingfAddAuthorized.adf 2 =08
=
f | Analysis Editor o g
Set the parameters of the selected Check
Name: testingAddAuthorized target folder: C:\Waorkspaces\Models Clasky | =
oO-
Maodelfile: \TestProj\SecureDependencies.uml | o=
Modeltype: UML2 = New analysis file 1 l_I_I_JEl e
Selected checks:
EEvo\utiDn-aware Secure Dependency Check (de.umlsec.ch
Select file type UmML2 -
Up
il Select the model file /TestProj/model.uml
Down
« M b
Run
Analysis Editor
* Analysis Results 52 3) -
nayss Rests 12 N> Frin] [cancel
Analysis / Check / Messages model element add. inf
« testingAddAuthorized (UML2) 20120126 TTTS0

B

Figure 3.1: CARISMA GUI Elements

which implements, among other tools, the OMG Meta Object Facility (MOF) specification
[19]. This implementation, called Ecore, is used as a base for the UML2 metamodel
implementation also provided by the Eclipse Foundation [15]. UML2 provides support
for access and modification of UML 2.x models using the widely accepted .uml XML file
format.

Like Eclipse, CARISMA has been implemented as a plug-in based architecture. Using
the modularity provided by this method, CARISMA is distributed as several packages, of
which the Core package includes the main functionality. Furthermore, CARISMA uses
extension points and extensions [10], there by facilitating the contribution of functionality
of other plug-ins (see sub section [3.1.1). Part of the existing plug-ins can be seen in
Figure[3.2

Support for different modelling languages can be added by installing the corresponding
modeltype packages. UMLsec and UMLchange are optional packages to incorporate
support for the respective UML profiles. The checks used in a CARISMA analysis can be
installed separately to enable sleek installations.

3.1.1 Extending CARISMA

To provide a new check for a CARiISMA analysis, a template plug-in project can be gen-
erated using the appropriate wizard. If required, the wizard generates a preference page
for the check. This page can then be used to set possible global properties.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 21

deumlsec.check....
de.umlsec.profile.umlsecl de.umlzec check.smancardl
L — |de umISec.check.StaticcheckI
T - - = |
!
de.umlsecmodeltpe uml2| -

T T Tl —jde.umlsectool.core
\
\ |
Eclipse UML2 Flugin -7
| "

T e dipes « EMF

Figure 3.2: Overview of the CARISMA architecture

A CARISMA check extends the de.umlsec.tool.analysischeck extension point, which pro-
vides identification and description properties for the check. Additionally, parameters for
the check can be defined using the extension point. A check parameter can be one of the
primitive types String, Integer and Boolean, and file system references to input or output
files and folders. Each parameter can also be marked optional. After defining the check
and its parameters, it is added to the list of available checks and can be added to an
analysis in the Analysis Editor. The check’s parameters can then be either pre-set in the
editor or at the appropriate time during the analysis.

The entry point for a CARISMA check is the perform method, which receives the pa-
rameters for the given check and an AnalysisHost interface. This interface is used for
generating entries for the Analysis Results view and access to the analysed model. The
two interfaces are shown in Figure [3.3]

<<interface>>

AnalysisHost
<<interface>> +addResulttdessage (detail : AnalvsisResulttMessage)
CarismaCheck 1+ appendToReport ftext : String)
+perform (parameters ;: ListkCheckParametar>, host: AnalysisHost) : Boolean +appendLineToReport (text: String)

+getanalyzediodel () - Resource
+ getCurrenthodelFilenarme () : String

Figure 3.3: Check and AnalysisHost Interfaces

A reference to the analysed model is provided by the AnalysisHost interface. The meth-
ods to traverse and analyse the given model are supplied on a more abstract level by
the Ecore metamodel implementation. In the case of UML 2.x models, the Eclipse UML2
metamodel implementation offers easier access to model elements and their properties.
Furthermore, CARISMA or rather the package de.umlsec.modeltype.uml2 provides some
utility classes to help in collecting and analysing model elements. Finally, to ease working
with the UMLsec and UMLchange profiles, utility classes are provided by the respective
packages.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 22

- de.umlsec.evolution uml?
de.umlsecevolutlonl
1 UMLMeodifier
Change DeltaElement | .~
- i
S A- !
1 " 1. - "
i 1 - ‘
T P |
™ Delta !
- L
1. S -
1 - T de.umlsec.check evolution....
Alternative fge | - |
™ |
DeltaFactory f-— — — |-]
e
-
-~ o -
- - -
de.umlsec.prufile.umlsecl - de urfilsec.evolution uml2 urmlchange
o \
UMLchangeParser
de.umlsec.prufile.umlchangeI e ——— T T T -

Figure 3.4: CARISMA Evolution Architecture (simplified)

3.1.2 Evolution Support

CARISMA is able to parse, interpret and apply evolutions described using UMLchange.
The components providing the support for evolution-aware checks are shown in Figure

After applying change descriptions to the model via the UMLchange profile, evolution-
aware CARISMA checks can be performed on the model. Internally, a parser component,
the UMLchangeParser, searches the model for UMLchange applications, which are col-
lected and then transformed to sets of equivalent delta elements.

The change structure generated by the UMLchangeParser consists of Changes which in
turn contain a list of Alternatives. These Alternatives finally consist of sets of DeltaEle-
ments. In addition to multiple Alternatives, Changes themselves may have constraints
attached to them restricting when the Changes may or may not take place.

The DeltaFactory processes the Change constraints and alternatives and generates all
possible permutations over the alternatives while following the constraints imposed by the
Changes. Each valid change permutation is saved as a Delta which can be fetched from
the DeltaFactory.

A Delta can be applied to the model using the UMLModifier. The UMLModifier receives
the original model, creates a copy of it and applies each DeltaElement to the model copy.
The resulting model is stored and can be used in the CARISMA evolution-aware checks.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 23

3.2 Validation

The new CARISMA tool, and with it the UMLchange notation, has been evaluated within
the POPS case study. The validation was focused on using CARISMA for evolution-aware
security analysis in model-based development. It was organized as a half-day workshop
at Gemalto in Paris. During the workshop the new tool and the UMLchange notation
have been presented to industrial practitioners. The presentation included an introduction
into architecture, user interface, and functionality of the tool, as well as teaching the
UMLchange notation. Furthermore, a live demo of the tool was given. And exercises
have been elaborated in order to allow the practitioners to get started with the tool. After
the workshop the practitioners were able to use CARISMA and to further evaluate the tool
as "homework".

The first impression of the practitioners was that CARISMA is a nice and powerful tool.
The concept of UMLchange was rated with 4 (of maximal 5) points. The handling of the
stereotype-based approach to describe evolution was rated with 3 points. Especially, the
UMLchange grammar for describing new elements was seen as problematic (2 points).
Typographic errors can arise, e.g. when entering qualified names of referred model ele-
ments. To tackle this problem, one could implement an auto-completion tool that allows
the user to select the referenced element from a list instead of typing its name manu-
ally. This feature is evaluated for the next version of CARISMA. Another suggestion of
improvement were more expressive error descriptions in case of reported security viola-
tions. To that effect the output of CARISMA has been extended.

The practitioners were especially interested in how the security checks have been imple-
mented. The fact that most checks are implemented in Java lead to dissatisfaction. From
industrial point of view they prefer that the checks are defined very precisely in OCL [32]
or other formal notations, which would allow them to check whether the checks work as it
is supposed to.

Nonetheless, the practitioners rated the tool to be applicable in daily practice, if UML is
thoroughly used for modeling and if the tool is here and there a little bit improved. Further-
more, a large library of pre-defined checks should be available. However, if necessary, the
checks could be implemented due to the available extension mechanism of CARISMA.
A thorough review of the SecureChange solutions and thus the basic concepts of the
CARISMA tool is presented in Deliverable 1.3 [44].

Further Applications. Due to the fact that CARISMA is now compatible with UML2, it
also allows Thales to integrate the tool into their processes. They use CARISMA in the
context of the ATM case study. The Thales Security DSML [43] is used to perform a risk
analysis that gives high-level security requirements, which are reflected in the system
design and can be analyzed by means of CARISMA.

The feedback of Thales provides valuable input so that the tool and the contained security
checks can continuously be improved. A closed validation similar to the POPS validation,
however, did not happen so far.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 24

3.3 Difference-Based Security Analysis

Recently, we have started to implement an alternative approach for evolution-aware se-
curity analysis [29]. Instead of annotating a UML model with UMLchange stereotypes, it
is now possible to compare two versions of a model to gather evolution. Due to the new
CARIiSMA tool which is based on Eclipse and the support of the UML2-based models, we
are now able to compare two versions of a model (which are EMF model instances from
technical point of view) using the EMFcompare plugin of Eclipse [13]. A new CARISMA
check that we have implemented can take the difference information provided by EMF-
compare and transform it into an instance of the delta model presented in Section
Thereby, we can run the evolution-aware security checks as if the UMLchange profile
would have been used.

However, the new approach is partly limited compared to the UMLchange approach.
Since only two versions of a model can be compared, it is not possible to verify all possible
evolution path’s at a time as they could be specified using UMLchange and the grammar.
The difference computation of EMFcompare comes with a drawback. It is either based
on unique identifiers used in the model or it uses a heuristic for comparison. In the first
case, the engineer might be bound to certain modeling tools (i.e. those which preserve
the identifiers of model elements when the model is changed). In the second case, it is
not clear whether the heuristic leads to the correct result which might have an impact on
the quality of the security checks. Furthermore, the difference computation is a runtime
overhead, where it is not clear whether it preserves the runtime advantages of evolution-
aware security checks compared to complete verification of models. We assume that it is
worth in case of very large models and complex security checks.

A detailed analysis of the drawbacks and an evaluation whether the difference-based
approach is a promising solution for evolution-aware security analysis is part of ongoing
and future work.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 25

4 Support for the Creation of Test Schemas

In this chapter we show how model-based testing (MBT) jointly profits from the CARISMA
tool and the UMLchange approach for security annotated models and the MBT under
evolution. Our main objective is that the model used for test generation is verified for con-
sistency with respect to the considered security properties, and this consistency should
also hold after the model has evolved. If not, the model may authorize an incorrect be-
haviour and the produced tests will expect the same erroneous behaviour as the model
from the System Under Test (SUT). The idea has already been discussed in Deliverable
4.2 (Chapter 5) [43] as well as in [17]. It is part of the integration with Work Package 7
(WP7), which focuses on MBT.

We have considered two security properties of the Global Platform that are critical for a
device issuer/owner in order to have control over compromised running devices [1]: The
locked-status (property 1) and the authorized-status property (property 2). The definitions
are presented later in chapter [4.2]

Since we are not aiming at verifying behavioural properties, but at ensuring a structural
property as a precondition to the testing process, these properties can be checked stat-
ically on UML statecharts. As presented in Deliverable 4.2, we have defined two new
UMLsec stereotypes «locked-status » and « authorized-status » [43]. In the meanwhile,
we have improved these stereotypes in a way, that they are no longer attached to a
subsystem but directly to the affected UML state. The state tags in the stereotypes be-
came thereby obsolete. Checks for each of the two properties have been implemented in
CARISMA.

Model-based testing makes use of selection criteria that indicate how to select the tests
to be extracted from the model. The approach for testing security properties for evolving
systems relies on defining additional selection criteria in the shape of test schemas. This
is explained in Deliverable 7.4 [43].

4.1 Integrated Approach

The process is summarized in fig. First, a validation engineer evolves a model ac-
cording to the proposed changes to the previously verified test model by adding the corre-
sponding UMLchange stereotypes (Step 1). (S)He uses CARISMA to validate the model
against the security properties (Step 2), to make sure that the model respects them.
Once the model is declared correct by Step 2, a triple for each property and the delta of
changes is exported. Using transformation rules, the schema is written with respect to the
used property (Step 3). The created schema (Step 3) and the produced delta (Step 4),
can be used to produce test cases exercising the property (Step 5).

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 26

N

|
i = Useof A C - ; @
UMLssc/seChprocess

Check properties P (w.r.t. evolutions A)

Figure 4.1: Integration of MBT, UMLsec and UMLchange

4.2 Transformation of UMLsec Stereotypes into Test Schemas

After the model has been verified with CARISMA we want to export test schemas based
on the properties specified before, encapsulating the expected behaviour of the sys-
tem after executing particular instructions that could potentially violate the property and
make the system not behave as expected. This generation represents thus the link from
UMLsec to testing, since we can automatically generate test sequences from schemas.

In order to do so, we have implemented a check for CARISMA that exports the security
properties as hoare triples which define generic rules to create test schemas. If the
expected behaviour of the system under test is modeled as a statechart where its states
represent the status of the card’s life-cycle, and there is a command set_status only
executable by privileged applications to change the card’s status from one to another and
this is the event triggering all transitions in the model.

The first property, the locked-status property, ensures that whenever an application with
enough privileges terminates the system (i.e. set to state TERMINATED), the system
cannot be put back in operation. We can write property 1 as a hoare triple.

{state = TERMINATED} all™ {state = TERMINATED}

that is, if we reach the state TERMINATED, then after an arbitrary number of calls to any
operation, the resulting status should be the same. In other words, there should be no
outgoing transitions from that state to other states.

The second property, the authorized-status property, prohibits an application that does
not have the given privilege to terminate the system. It can be written as

{state £ TERMINATED} all* {state 2 TERMINATED}

assuming that the application executing the operations has not enough privileges.

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 27

Hence, based on the hoare triples exported by CARISMA instances of the schema lan-
guage can be generated. Informally, the sequences of operations that we need for check-
ing the security properties as specified before (that is of the form {T'} ST {Q}) are:

select privileged application

go to state respecting T’

use an operation from S at least once

check Q

In case of the locked-status property, the concrete schema looks as follows:
for_each $X from TERMINATED
for_each $Y from TERMINATED
for_each $Z from
use

(permission = true) "instance”
then use

(self.state=$X) "instance”
then use $Z

(self.state = $Y) "instance”

4.3 Decreasing Model Comparison Efforts

The test generation process regarding evolutions is as follows. It takes as input the se-
curity property and two formal models, one representing the system before evolution and
another representing the same system after the evolution took place. It also considers
a set of test cases generated from the original model. The process, called SeTGaM,
starts by a comparison of the unfolded test case specification for both models. Then a
dependency impact analysis aims at identifying impacts on both models w.r.t. changes
of the specification and the existing security test suite. Then test cases from the original
security test suite are classified into removed, outdated, unimpacted, new tests, and so
on. Details on the SeTGaM process can be found in [16].

In order to support that process, we have implemented another CARISMA check. After
a model containing UMLchange annotations has been verified, a description of the evo-
lution is exported. If all changes pass the security verification, we can apply them to the
model and the tool provides the delta to the SeTGaM process. Thereby the SeTGaM
process does not have to recompute the evolution information but it can use the previ-
ously verified changes. In order to integrate the two approaches we have implemented a
component that transforms the UMLchange annotations into a delta description in XML
format. The XML file describes the actual changes that are applied to the model.

An example of an evolution in the GP specification that is exported to the SeTGaM pro-
cess is shown in appendix[A.5]

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 28

5 Statechart-Based Monitoring of Java Ap-
plications

5.1 Introduction

Implementing safety and security aspects is an integral part of software development. To
ensure the safety and security of an application, requirements can be formulated using
UML and the UMLsec profile or other modeling languages. Unfortunately this approach
only guarantees the correctness of the model of the application and cannot verify the
correctness of the implemented program. To accomplish this, static code analysis can
be used, but it often proves to be inefficient for large software projects and cannot guar-
antee that no critical mistakes exist in an application. A solution to this problem is the
monitoring of the application during runtime. This chapter describes an approach, which
uses modifications of bytecode to inform the monitor about the state of the application
(inline-monitoring [8]). The monitor is generated from UML state charts describing the
expected behaviour.

Modern software development requires the utilization of (formal) models (e.g. UML mod-
els) during application design. In model based security engineering, additional informa-
tion is added to the models to describe security requirements. Due to possible mistakes
in the implementation of a program, validating only the model of an application is not
sufficient to guarantee that an application meets all specified security requirements. The
works of Bauer, Jirjens and Pironti ([2], [38]) describe how the validation of an application
model can be combined with the monitoring of the program execution. In addition to that,
Jurjens, Bauer and Yu [27] [3] explain how to maintain the connection between model
and source code during and after the modification of the program.

Colin and Mariani [7] provide a good overview about the concept of run time verification.
Aspects of the application are validated by an external monitor over the course of the
application’s execution, thus enabling to detect mistakes in the implementation of the
program.

Schneider [39] describes an approach to implement a monitor by using a finite state
machine in order to validate program execution. Each step in the program’s execution is
monitored and compared to the transitions of a finite state machine to determine whether
the execution of the program is still valid or if it has to be terminated. We pick up this
idea and describe our monitoring approach which is based on bytecode instrumentation
in what follows.

5.1.1 Bytecode instrumentation

The modification of java bytecode before its execution in the Java Virtual Machine is called
bytecode instrumentation [35]. The source code of the application is not changed and

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 29

does not have to be present to alter the bytecode. Furthermore, bytecode instrumentation
enables changes to programs, even when only the .class files are available. One of
the most used modifications of bytecode is the injection of additional operations. These
operations can be used to inform a different application about the state of the program or
the occurrence of certain events.

Bytecode instrumentation is very efficient in terms of performance. Since standard Java
bytecode is used, the Java VM can execute the application and improve its performance
by optimizing the code. Overhead is only created by the addition of operations and can
be reduced by limiting the use of bytecode instrumentation to the relevant parts of the
application[33].

Depending on the point in time at which the bytecode is altered three types of bytecode
instrumentation can be differentiated[35]. With static instrumentation, all .class files of
an application are modified and saved in a separate folder. The Java VM is launched with
the altered files. A disadvantage of this approach is that all .class files of the applica-
tion have to be processed even if they are not used during the course of the program.
This problem is more serious in large software projects. Load-time instrumentation com-
pensates this by altering the files only when they are loaded by the Java VM. The agent
responsible for the bytecode instrumentation alters the code before it is executed. After
the bytecode has been loaded, dynamic instrumentation enables the user to modify the
bytecode while it is executed. Moreover, this adds the ability to restore the .class files to
their original state[39].

5.2 Generation of Monitors

Our approach validates an application during runtime by using an implemented monitor.
In order to report method calls to the monitor, before they are executed, load-time instru-
mentation is used to inject additional statements into the java bytecode of the application.
This type of monitoring is called inline-monitoring [8]. The monitor checks if the desired
method call is allowed at that specific point of program execution based on a UML state
diagram. The diagram is loaded before the execution of the application and transformed
into an internal representation (see Section to increase the performance of vali-
dating method calls. In case of a forbidden method call the monitor is able to log this
event and/or terminate the observed application, which may be useful if sensible data is
in danger of being compromised.

There are two ways to implement the bytecode instrumentation. On the one hand, all
method calls could be reported to the monitor. This would ensure the highest level of se-
curity, because each method call not represented in the state diagram will be regarded as
an error in the program’s execution. However, due to the increased number of messages
sent to the monitor, the performance of the application would decrease. Alternatively, it
is possible to monitor only those method calls represented in the diagram. This ensures
that all modeled methods may only be called in the order specified by the diagram. All
other methods are allowed to be executed arbitrarily between the monitored ones. The
implementation presented supports both approaches.

The state diagram used for validating the allowed method calls has to meet specific re-

secure |

- D4.3 Tool Support for Evolution-Aware Security Checks
CHANGE and Monitor Generation
(V] version 1.0| page 30

quirements in order to be used as an input for the monitor. These requirements are
described in the following Section Table [5.1] provides an overview of the most im-
portant features and how they are represented by elements of the state diagram. A more
detailed description of each behavior is given in the indicated sections. Note that the mon-
itor does not perform a security analysis. It only checks if the running program enforces
the restrictions given by the state diagram. The analysis of the application’s security
aspects has to happen in advance, for example by model-based security engineering.
Therefore the usage of the described monitor is not restricted to security analysis.

Feature Element in diagram

allowed method call labeled transition exists
forbidden method call no according transition exists
allow all